# Personal Video Archiving Anamorphic, Sar, Dar, and Par 

Aspect Ratio and Anamorphic with Sar, Dar, and Par infromation and uses.

Author - Andrea Paz<br>February 15, 2024

## Contents

Contents ..... i
1 Overview ..... 1
1.1 HDV, anamorphic and non-square pixels ..... 1

## Chapter <br> 1

## Overview

### 1.1 HDV, anamorphic and non-square pixels

A guide on how to handle anamorphic formats in Cinelerra-GG. For a detailed discussion see: https://lurkertech.com/lg/pixelaspect/

### 1.1.1 Theory

There are two aspect ratios: the Pixel Aspect Ratio and the Frame Aspect Ratio. See Figure 1.1 (from https://stackoverflow.com/questions/18877243/why-ffmpeg-print-sar-instead-of-par):


A pixel of image:
SAR (Sample Aspect Ratio)
or PAR (Pixel Aspect Ratio, px : py)


Figure 1.1: DAR and SAR compared
Unfortunately, there are two opposing schools of thought in describing various aspect ratios:

1. $\operatorname{PAR}=$ Pixel (pixel) aspect ratio and $\mathrm{SAR}=$ Storage (frame) aspect ratio.
2. $\mathrm{PAR}=$ Picture (frame) aspect ratio and $\mathrm{SAR}=$ Sample (pixel) aspect ratio.

Ffmpeg follows this second way, and in addition the total absence of PAR replaced by W/H of the input frame. Cinelerra-GG uses ffmpeg to show the results in the Resources window, Media Folder, Asset/RMB $\rightarrow$ Info $\rightarrow$ Detail, which indicates S (ample)AR.

For practical purposes the concepts are the same and only the definitions change. The important thing is to understand that the pixel aspect ratio, whether called PAR or SAR, is the conversion factor that, in the case of non-squared pixels, brings the aspect ratio of the input frame to that of the output frame. The basic formula for understanding the various aspect ratios is as follows:

$$
D A R=S A R \times P A R(=W / H)
$$

with:

DAR $=$ Display Aspect Ratio. It is the aspect ratio of the frame on the screen. In Cinelerra-GG is the shape of canvas (or project or output). It is a frame aspect ratio.
$\mathbf{P A R}=\mathbf{W} / \mathbf{H}=$ Picture Aspect Ratio. It is the initial aspect ratio (input), for example of the source media file. It is also, the number of pixel (Width and Height) used to memorize the asset. It is a frame aspect ratio. To avoid confusion with the other definition of PAR (that is: Pixel aspect ratio) we will use W/H ratio more.

SAR $=$ Sample Aspect Ratio. It is the ratio of the sides of the single pixel. It is a correction factor for the recordered frame format resolution, to get the desired output display resolution at a given DAR. It is a pixel aspect ratio.

Monitors and modern HD+ TVs have square pixels. Since most formats, sensors, digital video signals and displays have square pixels, then the reproduction will always be correct. Older NTSC and PAL TVs do not have pixels but scan frequencies that support both anamorphic and non-anamorphic signals. For an overview on older PAL/NTSC TVs, see wikipedia: https://en.wikipedia.org/wiki/Pixel_ aspect_ratio\#Pixel_aspect_ratios_of_common_video_formats.

SAR being the ratio of single pixel sizes, is 1 (or 1:1) for square pixels while it is different from 1 for rectangular pixels. We have the following values for the formats DV and HDV (from: https://www.mail-archive.com/ffmpeg-user@ffmpeg.org/ msg 27522 .html, with further variations):

| DV; HDV | Display <br> (Output) | DAR <br> (W/H) | Picture <br> (Input) | PAR <br> (W/H) | SAR $=$ <br> DAR $\times$ W/H |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16:9-2160 | $3840 \times 2160$ | $16: 9$ | $3840 \times 2160$ | $16: 9$ | $1: 1$ |
| $4: 3-2160$ | $2880 \times 2160$ | $4: 3$ | $2880 \times 2160$ | $4: 3$ | $1: 1$ |
| 16:9-1080 | $1920 \times 1080$ | $16: 9$ | $1920 \times 1080$ | $16: 9$ | $1: 1$ |
| 16:9-1080 | $1920 \times 1080$ | $16: 9$ | $1440 \times 1080$ | $4: 3$ | $1: 1$ |
| 16:9-720 | $1280 \times 720$ | $16: 9$ | $1280 \times 720$ | $16: 9$ | $1: 1$ |
| 16:9-1080 | $1920 \times 1080$ | $16: 9$ | $1440 \times 1080$ | $4: 3$ | $4: 3$ |
| $16: 9-576$ | $1024 \times 576$ | $16: 9$ | $720 \times 576$ | $5: 4$ | $64: 45$ |
| $4: 3-576$ | $768 \times 576$ | $4: 3$ | $720 \times 576$ | $5: 4$ | $16: 15$ |
| $16: 9-480$ | $853 \times 480$ | $16: 9$ | $720 \times 480$ | $3: 2$ | $32: 27$ |
| $4: 3-480$ | $640 \times 480$ | $4: 3$ | $720 \times 480$ | $3: 2$ | $8: 9$ |

To summarize: in the digital domain, one can use the concept of SAR (pixel aspect ratio) when dealing with anamorphic digital formats (for example, when transcoding to a format that has a different WxH). Similarly, in the context of Standarddefinition television or with $D V, H D V$ and a few other formats, SAR uses the formula $\mathrm{DAR}=\mathrm{SAR} \mathrm{x}(\mathrm{W} / \mathrm{H})$, where SAR is the conversion factor between Input and the Output aspect ratio.

### 1.1.2 How CinElerra-GG works

What has been said so far is to clarify the theoretical framework; if users want to go deeper into the subject, they will certainly be dealing with these formulas and definitions. However, Cinelerra-GG does not require knowledge of the formula or the definitions of PAR and SAR. The Format window in the Settings pulldown, is used to set the Width/Height and DAR; PAR and SAR are used in a hidden way.

So:

- SARsource is shown in Asset/RMB $\rightarrow$ Info $\rightarrow$ Detail; The SARproject is not shown in the Settings $\rightarrow$ Format window and cannot be set directly. It can be calculated from: SARproject=DAR/(W/H).
- DAR is shown in Display Aspect Ratio. It determines the shape of the frame. It is the factor that adapts the WxHsource to the WxHproject. Its value allows you to vary the frame aspect ratio by involving the shape of the pixels as well. Auto changes the DAR to always have square pixels. If the asset
has rectangular pixels the Auto setting will result in a distorted (vertically stretched) frame.
- W/H is calculated from the Width and Height values of the canvas. W/H Ratio can also be used to automate calculations. We have:

WxHsource $=$ WxHproject $\rightarrow$ Correct display.
WxHsource $<\mathrm{WxHproject} \rightarrow$ pad (letterbox, pillarbox).
WxHsource $>$ WxHproject $\rightarrow$ crop.
To avoid cropping/padding we can use a scaling step via Asset/RMB $\rightarrow$ Info $\rightarrow$ Resize or with the Scale plugin. The scaling process does not alter the image because it maintains the pixel form factor by simply varying the resolution.

From Settings -> Format window you set the format (Width, Height and DAR) or you apply a preset, at this point the sources will have to adapt to this format.

To see some useful examples, see Raffaella Traniello: http://www.g-raffa.eu/ Cinelerra/HOWTO/anamorphic.html

### 1.1.3 Use Case

For a video tutorial, see HDV, anamorphic and non-square pixels.
How to downconvert/scale between two standard 16:9 anamorphic video formats. From HDV 1080i (called 16:9-1080, PAR 4:3, in the table) to DV 16:9, preset PAL $576 i$ (16:9) $-D V(D)$ (called 16:9-576 in the table).

Source: HDV (mpegts); WxH=1440x1080; SAR=4:3; DAR=16:9. The format is anamorphic with rectangular pixels stretched horizontally. For the formula seen above we have:
$\operatorname{DAR}(16: 9)=1440 / 1080 \times \operatorname{SAR}(4: 3)=1.3333 \times 1.3333=1.777$
Step 1: As we go from a project size of $1440 \times 1080$ to a size of $720 \times 576$, we have to choose whether we want to crop or downscale the source. In the first case we continue with step 2; in the second case we must first downscale, for example, using the Resize command found in the Resource window; RMB on source $\rightarrow$ Info $\rightarrow$ Resize. This way we vary the initial W/H preparing it for the preset we will use in step 2.

Step 2: We change the project from the initial one (of the source) to the preset PAL 576i (16:9) -DV(D).

Now we have:
$720 \times 576$; W Ratio $=0.5000$; H Ratio $=0.5333$; DAR 16:9
from which:
$\operatorname{SAR}=\operatorname{DAR} /(720 / 576)=1.7778 / 1.25=1.4222=64: 45$
Note that the video is cropped if we did not downscale in step1.

Step3: Render with $d v$ pal.avi or $d \nu$ pal.qt preset. Now we have:
$720 \times 576 ; \mathrm{SAR}=64: 45(=1.4222) ; \mathrm{DAR}=16: 9$
The difference between the new SAR (1.4222) versus the initial SAR (1.3333) of the source can be explained by taking into account that when Height=576 pixels, the width needs to be displayed horizontal (unsqeezed) with $\mathrm{W}=576 \times 16 / 9=1024$ pixels (square). But the width needs to be stored (compressed, squeezed) within SD-DV(D)'s format $\mathrm{W}=720$ pixels; therefore:
$\mathrm{SAR}=(576 \times 16 / 9) / 720=64 / 45=1.4222$
$\mathrm{PAR}=\mathrm{W} / \mathrm{H}=720 / 576=1.25$
DAR $=16: 9$ (unchanged)

NOTE: the $d v$ pal-avi render preset provides interlaced video, consistent with the chosen project preset (576i). However, the avi format used does not provide this information in RMB $\rightarrow$ Info $\rightarrow$ Asset Interlacing or even in ffprobe. If the $d v$ pal.qt render preset is used, it provides the correct information (Top Fields First, the standard for SD PAL).

