At the same time as changing the \textit{Height} parameter we also need to set \texttt{Display Aspect rati}o to 2.35. In fact, the parameters in Canvas Size are not related to those in Display Aspect ratio, unless we keep the \texttt{Auto} option checked, and we need to set both before we click on the \texttt{Apply} button. To set the aspect ratio to 2.35:1 we can choose from the drop-down menu the value 2.35 or set the value directly in the two input fields. Or again, it can be done automatically via the Auto option. Finally we can click on the Apply button to complete the calculations. Now we have arrived at the desired result: typical Super 35 mm dimensions and aspect ratio, although starting from a 16:9 FullHD. The new canvas, however, lost the pixels of a part of the initial video (crop), to be precise $1080 - 816 = 264$ lines of pixels from top and bottom.
-\CGG{} allows you to vary the input and output aspect ratio in the ways indicated in the previous section: by varying the pixels of the sides (Width/Height) or by setting a multiplication coefficient (W/H Ratio; in this example: placing $H Ratio = 816 : 1080 = 0.7556$) which performs the calculation automatically. If you set \textit{W Ratio} and \textit{H Ratio} at the same time with the same values, they work as multipliers and you get a resizing of the canvas, without altering the initial aspect ratio. If you change them to two different values or change only one of the two parameters, leaving the other at 1, you get an anamorphic video, with the pixels no longer being square (1:1) but becoming rectangular, deforming the image. If you use a non-standard aspect ratio, this has impact on other areas like titles, included stills and included non-anamorphotic footage. To avoid anamorphosis, the \texttt{Display Aspect ratio} must also be adjusted at the same time, for example, with the Auto option. \textit{Anamorphic} format is a complex field that is discussed
+\CGG{} allows you to vary the input and output aspect ratio in the ways indicated in the previous section: by varying the pixels of the sides (Width/Height) or by setting a multiplication coefficient (W/H Ratio; in this example: placing $H Ratio = 816 : 1080 = 0.7556$) which performs the calculation automatically. If you set \textit{W Ratio} and \textit{H Ratio} at the same time with the same values, they work as multipliers and you get a resizing of the canvas, without altering the initial aspect ratio. If you change them to two different values or change only one of the two parameters, leaving the other at 1, you get an anamorphic video, with the pixels no longer being square (1:1) but becoming rectangular, deforming the image. If you use a non-standard aspect ratio, this has impact on other areas like titles, included stills and included non-anamorphic footage. To avoid anamorphosis, the \texttt{Display Aspect ratio} must also be adjusted at the same time, for example, with the Auto option. \textit{Anamorphic} format is a complex field that is discussed
in Andrea's paper: {\small \url{https://cinelerra-gg.org/download/Anamorphic.pdf}}.
as well as in the Raffaella Traniello's guide: {\small \url{http://www.g-raffa.eu/Cinelerra/HOWTO/anamorphic.html}}.
\item To remove the current media from being displayed, choose \textit{Close source}.
\end{enumerate}
-The Viewer uses the project's output size output size{entry} format settings to display the media instead of the
+The Viewer uses the project's output size format settings that is in effect to display the media instead of the
original asset's format. Operations performed in the Viewer affect a temporary EDL or a clip rather
than the timeline. By default, the Viewer window is automatically available but if it gets
accidentally closed you can open it again by using the pulldown \texttt{Window $\rightarrow$ Show