From: Good Guy Date: Wed, 15 Feb 2023 01:27:28 +0000 (-0700) Subject: fix incorrect name and Makefile change from Andrew X-Git-Tag: 2023-02~2 X-Git-Url: https://cinelerra-gg.org/git/?a=commitdiff_plain;h=b02fdb87043299bef5d120ddedb1c0252f5bf027;p=goodguy%2Fcinelerra.git fix incorrect name and Makefile change from Andrew --- diff --git a/cinelerra-5.1/cinelerra/Makefile b/cinelerra-5.1/cinelerra/Makefile index 5c358569..d9fc6ce7 100644 --- a/cinelerra-5.1/cinelerra/Makefile +++ b/cinelerra-5.1/cinelerra/Makefile @@ -544,6 +544,7 @@ all: $(OUTPUT) $(CUTADS) $(BDWRITE) $(LV2UI) $(OUTPUT): $(OBJS) $(THEME_DATA) $(DCRAW) $(LIBRARIES) $(LINKER) `cat $(OBJDIR)/objs` $(if $(findstring -g,$(CFLAGS)),objcopy --only-keep-debug $(OUTPUT) $(OUTPUT_G)) + $(if $(findstring -g,$(CFLAGS)),objcopy --add-gnu-debuglink=$(OUTPUT_G) $(OUTPUT)) $(if $(findstring -ggdb,$(CFLAGS)),,strip $(OUTPUT)) ln -f -s ../bin/$(WANT_CIN) ci @@ -552,6 +553,7 @@ $(CUTADS): $(CUTOBJS) $(CUTLIBS) $(LIBRARIES) @echo $(CXX) -o $@ $(CUTOBJS) @$(CXX) $(CFLAGS) -pthread -o $@ $(CUTOBJS) $(CUTLIBS) $(LIBS) $(if $(findstring -g,$(CFLAGS)),objcopy --only-keep-debug $(CUTADS) $(CUTADS).debuginfo) + $(if $(findstring -g,$(CFLAGS)),objcopy --add-gnu-debuglink=$(CUTADS).debuginfo $(CUTADS)) $(if $(findstring -ggdb,$(CFLAGS)),,strip $(CUTADS)) install-cutads: diff --git a/cinelerra-5.1/thirdparty/src/x265_3.5.patch0 b/cinelerra-5.1/thirdparty/src/x265_3.5.patch0 new file mode 100644 index 00000000..09c60b7a --- /dev/null +++ b/cinelerra-5.1/thirdparty/src/x265_3.5.patch0 @@ -0,0 +1,5319 @@ +diff -Naur ./source/CMakeLists.txt ../x265_apple_patch/source/CMakeLists.txt +--- ./source/CMakeLists.txt 2021-05-08 13:06:22.000000000 +0100 ++++ ../x265_apple_patch/source/CMakeLists.txt 2021-05-08 13:08:01.000000000 +0100 +@@ -40,9 +40,11 @@ + # System architecture detection + string(TOLOWER "${CMAKE_SYSTEM_PROCESSOR}" SYSPROC) + set(X86_ALIASES x86 i386 i686 x86_64 amd64) +-set(ARM_ALIASES armv6l armv7l aarch64) ++set(ARM_ALIASES armv6l armv7l) ++set(ARM64_ALIASES arm64 arm64e aarch64) + list(FIND X86_ALIASES "${SYSPROC}" X86MATCH) + list(FIND ARM_ALIASES "${SYSPROC}" ARMMATCH) ++list(FIND ARM64_ALIASES "${SYSPROC}" ARM64MATCH) + set(POWER_ALIASES ppc64 ppc64le) + list(FIND POWER_ALIASES "${SYSPROC}" POWERMATCH) + if("${SYSPROC}" STREQUAL "" OR X86MATCH GREATER "-1") +@@ -79,6 +81,15 @@ + message(STATUS "Detected ARM target processor") + add_definitions(-DX265_ARCH_ARM=1 -DX265_ARCH_ARM64=0 -DHAVE_ARMV6=1) + endif() ++elseif(ARM64MATCH GREATER "-1") ++ if(CROSS_COMPILE_ARM64) ++ message(STATUS "Cross compiling for ARM64 arch") ++ else() ++ set(CROSS_COMPILE_ARM64 0) ++ endif() ++ message(STATUS "Detected ARM64 target processor") ++ set(ARM64 1) ++ add_definitions(-DX265_ARCH_ARM64=1 -DHAVE_NEON) + else() + message(STATUS "CMAKE_SYSTEM_PROCESSOR value `${CMAKE_SYSTEM_PROCESSOR}` is unknown") + message(STATUS "Please add this value near ${CMAKE_CURRENT_LIST_FILE}:${CMAKE_CURRENT_LIST_LINE}") +@@ -259,6 +270,9 @@ + endif() + endif() + endif() ++ if(ARM64 OR CROSS_COMPILE_ARM64) ++ add_definitions(-DHAVE_NEON) ++ endif() + add_definitions(${ARM_ARGS}) + if(FPROFILE_GENERATE) + if(INTEL_CXX) +@@ -350,7 +364,7 @@ + endif(GCC) + + find_package(Nasm) +-if(ARM OR CROSS_COMPILE_ARM) ++if(ARM OR CROSS_COMPILE_ARM OR ARM64 OR CROSS_COMPILE_ARM64) + option(ENABLE_ASSEMBLY "Enable use of assembly coded primitives" ON) + elseif(NASM_FOUND AND X86) + if (NASM_VERSION_STRING VERSION_LESS "2.13.0") +@@ -549,6 +563,32 @@ + ARGS ${ARM_ARGS} -c ${ASM_SRC} -o ${ASM}.${SUFFIX} + DEPENDS ${ASM_SRC}) + endforeach() ++ elseif(ARM64 OR CROSS_COMPILE_ARM64) ++ # compile ARM arch asm files here ++ enable_language(ASM) ++ foreach(ASM ${ARM_ASMS}) ++ set(ASM_SRC ${CMAKE_CURRENT_SOURCE_DIR}/common/arm64/${ASM}) ++ list(APPEND ASM_SRCS ${ASM_SRC}) ++ list(APPEND ASM_OBJS ${ASM}.${SUFFIX}) ++ add_custom_command( ++ OUTPUT ${ASM}.${SUFFIX} ++ COMMAND ${CMAKE_CXX_COMPILER} ++ ARGS ${ARM_ARGS} -c ${ASM_SRC} -o ${ASM}.${SUFFIX} ++ DEPENDS ${ASM_SRC}) ++ endforeach() ++ elseif(ARM64 OR CROSS_COMPILE_ARM64) ++ # compile ARM arch asm files here ++ enable_language(ASM) ++ foreach(ASM ${ARM_ASMS}) ++ set(ASM_SRC ${CMAKE_CURRENT_SOURCE_DIR}/common/arm64/${ASM}) ++ list(APPEND ASM_SRCS ${ASM_SRC}) ++ list(APPEND ASM_OBJS ${ASM}.${SUFFIX}) ++ add_custom_command( ++ OUTPUT ${ASM}.${SUFFIX} ++ COMMAND ${CMAKE_CXX_COMPILER} ++ ARGS ${ARM_ARGS} -c ${ASM_SRC} -o ${ASM}.${SUFFIX} ++ DEPENDS ${ASM_SRC}) ++ endforeach() + elseif(X86) + # compile X86 arch asm files here + foreach(ASM ${MSVC_ASMS}) +diff -Naur ./source/common/CMakeLists.txt ../x265_apple_patch/source/common/CMakeLists.txt +--- ./source/common/CMakeLists.txt 2021-05-08 13:06:22.000000000 +0100 ++++ ../x265_apple_patch/source/common/CMakeLists.txt 2021-05-08 13:08:01.000000000 +0100 +@@ -114,6 +114,22 @@ + source_group(Assembly FILES ${ASM_PRIMITIVES}) + endif(ENABLE_ASSEMBLY AND (ARM OR CROSS_COMPILE_ARM)) + ++ ++if(ENABLE_ASSEMBLY AND (ARM64 OR CROSS_COMPILE_ARM64)) ++ set(C_SRCS asm-primitives.cpp pixel-prim.h pixel-prim.cpp filter-prim.h filter-prim.cpp dct-prim.h dct-prim.cpp loopfilter-prim.cpp loopfilter-prim.h intrapred-prim.cpp arm64-utils.cpp arm64-utils.h) ++ enable_language(ASM) ++ # add ARM assembly/intrinsic files here ++ #set(A_SRCS ) ++ #set(VEC_PRIMITIVES) ++ ++ #set(ARM64_ASMS "${A_SRCS}" CACHE INTERNAL "ARM64 Assembly Sources") ++ foreach(SRC ${C_SRCS}) ++ set(ASM_PRIMITIVES ${ASM_PRIMITIVES} arm64/${SRC}) ++ endforeach() ++ source_group(Assembly FILES ${ASM_PRIMITIVES}) ++endif(ENABLE_ASSEMBLY AND (ARM64 OR CROSS_COMPILE_ARM64)) ++ ++ + if(POWER) + set_source_files_properties(version.cpp PROPERTIES COMPILE_FLAGS -DX265_VERSION=${X265_VERSION}) + if(ENABLE_ALTIVEC) +diff -Naur ./source/common/arm64/arm64-utils.cpp ../x265_apple_patch/source/common/arm64/arm64-utils.cpp +--- ./source/common/arm64/arm64-utils.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/arm64-utils.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,290 @@ ++#include "common.h" ++#include "x265.h" ++#include "arm64-utils.h" ++#include ++ ++#define COPY_16(d,s) *(uint8x16_t *)(d) = *(uint8x16_t *)(s) ++namespace X265_NS { ++ ++ ++ ++void transpose8x8(uint8_t* dst, const uint8_t* src, intptr_t dstride, intptr_t sstride) ++{ ++ uint8x8_t a0,a1,a2,a3,a4,a5,a6,a7; ++ uint8x8_t b0,b1,b2,b3,b4,b5,b6,b7; ++ ++ a0 = *(uint8x8_t *)(src + 0*sstride); ++ a1 = *(uint8x8_t *)(src + 1*sstride); ++ a2 = *(uint8x8_t *)(src + 2*sstride); ++ a3 = *(uint8x8_t *)(src + 3*sstride); ++ a4 = *(uint8x8_t *)(src + 4*sstride); ++ a5 = *(uint8x8_t *)(src + 5*sstride); ++ a6 = *(uint8x8_t *)(src + 6*sstride); ++ a7 = *(uint8x8_t *)(src + 7*sstride); ++ ++ b0 = vtrn1_u32(a0,a4); ++ b1 = vtrn1_u32(a1,a5); ++ b2 = vtrn1_u32(a2,a6); ++ b3 = vtrn1_u32(a3,a7); ++ b4 = vtrn2_u32(a0,a4); ++ b5 = vtrn2_u32(a1,a5); ++ b6 = vtrn2_u32(a2,a6); ++ b7 = vtrn2_u32(a3,a7); ++ ++ a0 = vtrn1_u16(b0,b2); ++ a1 = vtrn1_u16(b1,b3); ++ a2 = vtrn2_u16(b0,b2); ++ a3 = vtrn2_u16(b1,b3); ++ a4 = vtrn1_u16(b4,b6); ++ a5 = vtrn1_u16(b5,b7); ++ a6 = vtrn2_u16(b4,b6); ++ a7 = vtrn2_u16(b5,b7); ++ ++ b0 = vtrn1_u8(a0,a1); ++ b1 = vtrn2_u8(a0,a1); ++ b2 = vtrn1_u8(a2,a3); ++ b3 = vtrn2_u8(a2,a3); ++ b4 = vtrn1_u8(a4,a5); ++ b5 = vtrn2_u8(a4,a5); ++ b6 = vtrn1_u8(a6,a7); ++ b7 = vtrn2_u8(a6,a7); ++ ++ *(uint8x8_t *)(dst + 0*dstride) = b0; ++ *(uint8x8_t *)(dst + 1*dstride) = b1; ++ *(uint8x8_t *)(dst + 2*dstride) = b2; ++ *(uint8x8_t *)(dst + 3*dstride) = b3; ++ *(uint8x8_t *)(dst + 4*dstride) = b4; ++ *(uint8x8_t *)(dst + 5*dstride) = b5; ++ *(uint8x8_t *)(dst + 6*dstride) = b6; ++ *(uint8x8_t *)(dst + 7*dstride) = b7; ++} ++ ++ ++ ++ ++ ++ ++void transpose16x16(uint8_t* dst, const uint8_t* src, intptr_t dstride, intptr_t sstride) ++{ ++ uint16x8_t a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,aA,aB,aC,aD,aE,aF; ++ uint16x8_t b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,bA,bB,bC,bD,bE,bF; ++ uint16x8_t c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,cA,cB,cC,cD,cE,cF; ++ uint16x8_t d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,dA,dB,dC,dD,dE,dF; ++ ++ a0 = *(uint16x8_t *)(src + 0*sstride); ++ a1 = *(uint16x8_t *)(src + 1*sstride); ++ a2 = *(uint16x8_t *)(src + 2*sstride); ++ a3 = *(uint16x8_t *)(src + 3*sstride); ++ a4 = *(uint16x8_t *)(src + 4*sstride); ++ a5 = *(uint16x8_t *)(src + 5*sstride); ++ a6 = *(uint16x8_t *)(src + 6*sstride); ++ a7 = *(uint16x8_t *)(src + 7*sstride); ++ a8 = *(uint16x8_t *)(src + 8*sstride); ++ a9 = *(uint16x8_t *)(src + 9*sstride); ++ aA = *(uint16x8_t *)(src + 10*sstride); ++ aB = *(uint16x8_t *)(src + 11*sstride); ++ aC = *(uint16x8_t *)(src + 12*sstride); ++ aD = *(uint16x8_t *)(src + 13*sstride); ++ aE = *(uint16x8_t *)(src + 14*sstride); ++ aF = *(uint16x8_t *)(src + 15*sstride); ++ ++ b0 = vtrn1q_u64(a0, a8); ++ b1 = vtrn1q_u64(a1, a9); ++ b2 = vtrn1q_u64(a2, aA); ++ b3 = vtrn1q_u64(a3, aB); ++ b4 = vtrn1q_u64(a4, aC); ++ b5 = vtrn1q_u64(a5, aD); ++ b6 = vtrn1q_u64(a6, aE); ++ b7 = vtrn1q_u64(a7, aF); ++ b8 = vtrn2q_u64(a0, a8); ++ b9 = vtrn2q_u64(a1, a9); ++ bA = vtrn2q_u64(a2, aA); ++ bB = vtrn2q_u64(a3, aB); ++ bC = vtrn2q_u64(a4, aC); ++ bD = vtrn2q_u64(a5, aD); ++ bE = vtrn2q_u64(a6, aE); ++ bF = vtrn2q_u64(a7, aF); ++ ++ c0 = vtrn1q_u32(b0, b4); ++ c1 = vtrn1q_u32(b1, b5); ++ c2 = vtrn1q_u32(b2, b6); ++ c3 = vtrn1q_u32(b3, b7); ++ c4 = vtrn2q_u32(b0, b4); ++ c5 = vtrn2q_u32(b1, b5); ++ c6 = vtrn2q_u32(b2, b6); ++ c7 = vtrn2q_u32(b3, b7); ++ c8 = vtrn1q_u32(b8, bC); ++ c9 = vtrn1q_u32(b9, bD); ++ cA = vtrn1q_u32(bA, bE); ++ cB = vtrn1q_u32(bB, bF); ++ cC = vtrn2q_u32(b8, bC); ++ cD = vtrn2q_u32(b9, bD); ++ cE = vtrn2q_u32(bA, bE); ++ cF = vtrn2q_u32(bB, bF); ++ ++ d0 = vtrn1q_u16(c0, c2); ++ d1 = vtrn1q_u16(c1, c3); ++ d2 = vtrn2q_u16(c0, c2); ++ d3 = vtrn2q_u16(c1, c3); ++ d4 = vtrn1q_u16(c4, c6); ++ d5 = vtrn1q_u16(c5, c7); ++ d6 = vtrn2q_u16(c4, c6); ++ d7 = vtrn2q_u16(c5, c7); ++ d8 = vtrn1q_u16(c8, cA); ++ d9 = vtrn1q_u16(c9, cB); ++ dA = vtrn2q_u16(c8, cA); ++ dB = vtrn2q_u16(c9, cB); ++ dC = vtrn1q_u16(cC, cE); ++ dD = vtrn1q_u16(cD, cF); ++ dE = vtrn2q_u16(cC, cE); ++ dF = vtrn2q_u16(cD, cF); ++ ++ *(uint16x8_t *)(dst + 0*dstride) = vtrn1q_u8(d0, d1); ++ *(uint16x8_t *)(dst + 1*dstride) = vtrn2q_u8(d0, d1); ++ *(uint16x8_t *)(dst + 2*dstride) = vtrn1q_u8(d2, d3); ++ *(uint16x8_t *)(dst + 3*dstride) = vtrn2q_u8(d2, d3); ++ *(uint16x8_t *)(dst + 4*dstride) = vtrn1q_u8(d4, d5); ++ *(uint16x8_t *)(dst + 5*dstride) = vtrn2q_u8(d4, d5); ++ *(uint16x8_t *)(dst + 6*dstride) = vtrn1q_u8(d6, d7); ++ *(uint16x8_t *)(dst + 7*dstride) = vtrn2q_u8(d6, d7); ++ *(uint16x8_t *)(dst + 8*dstride) = vtrn1q_u8(d8, d9); ++ *(uint16x8_t *)(dst + 9*dstride) = vtrn2q_u8(d8, d9); ++ *(uint16x8_t *)(dst + 10*dstride) = vtrn1q_u8(dA, dB); ++ *(uint16x8_t *)(dst + 11*dstride) = vtrn2q_u8(dA, dB); ++ *(uint16x8_t *)(dst + 12*dstride) = vtrn1q_u8(dC, dD); ++ *(uint16x8_t *)(dst + 13*dstride) = vtrn2q_u8(dC, dD); ++ *(uint16x8_t *)(dst + 14*dstride) = vtrn1q_u8(dE, dF); ++ *(uint16x8_t *)(dst + 15*dstride) = vtrn2q_u8(dE, dF); ++ ++ ++} ++ ++ ++void transpose32x32(uint8_t* dst, const uint8_t* src, intptr_t dstride, intptr_t sstride) ++{ ++ //assumption: there is no partial overlap ++ transpose16x16(dst,src,dstride,sstride); ++ transpose16x16(dst+16*dstride+16,src+16*sstride+16,dstride,sstride); ++ if (dst == src) ++ { ++ uint8_t tmp[16*16] __attribute__((aligned(64))); ++ transpose16x16(tmp,src + 16,16,sstride); ++ transpose16x16(dst + 16, src + 16*sstride,dstride,sstride); ++ for (int i=0;i<16;i++) COPY_16(dst+(16 + i)*dstride,tmp + 16*i); ++ } ++ else ++ { ++ transpose16x16(dst+16*dstride,src + 16,dstride,sstride); ++ transpose16x16(dst + 16, src + 16*sstride,dstride,sstride); ++ } ++ ++} ++ ++ ++ ++void transpose8x8(uint16_t* dst, const uint16_t* src, intptr_t dstride, intptr_t sstride) ++{ ++ uint16x8_t a0,a1,a2,a3,a4,a5,a6,a7; ++ uint16x8_t b0,b1,b2,b3,b4,b5,b6,b7; ++ ++ a0 = *(uint16x8_t *)(src + 0*sstride); ++ a1 = *(uint16x8_t *)(src + 1*sstride); ++ a2 = *(uint16x8_t *)(src + 2*sstride); ++ a3 = *(uint16x8_t *)(src + 3*sstride); ++ a4 = *(uint16x8_t *)(src + 4*sstride); ++ a5 = *(uint16x8_t *)(src + 5*sstride); ++ a6 = *(uint16x8_t *)(src + 6*sstride); ++ a7 = *(uint16x8_t *)(src + 7*sstride); ++ ++ b0 = vtrn1q_u64(a0,a4); ++ b1 = vtrn1q_u64(a1,a5); ++ b2 = vtrn1q_u64(a2,a6); ++ b3 = vtrn1q_u64(a3,a7); ++ b4 = vtrn2q_u64(a0,a4); ++ b5 = vtrn2q_u64(a1,a5); ++ b6 = vtrn2q_u64(a2,a6); ++ b7 = vtrn2q_u64(a3,a7); ++ ++ a0 = vtrn1q_u32(b0,b2); ++ a1 = vtrn1q_u32(b1,b3); ++ a2 = vtrn2q_u32(b0,b2); ++ a3 = vtrn2q_u32(b1,b3); ++ a4 = vtrn1q_u32(b4,b6); ++ a5 = vtrn1q_u32(b5,b7); ++ a6 = vtrn2q_u32(b4,b6); ++ a7 = vtrn2q_u32(b5,b7); ++ ++ b0 = vtrn1q_u16(a0,a1); ++ b1 = vtrn2q_u16(a0,a1); ++ b2 = vtrn1q_u16(a2,a3); ++ b3 = vtrn2q_u16(a2,a3); ++ b4 = vtrn1q_u16(a4,a5); ++ b5 = vtrn2q_u16(a4,a5); ++ b6 = vtrn1q_u16(a6,a7); ++ b7 = vtrn2q_u16(a6,a7); ++ ++ *(uint16x8_t *)(dst + 0*dstride) = b0; ++ *(uint16x8_t *)(dst + 1*dstride) = b1; ++ *(uint16x8_t *)(dst + 2*dstride) = b2; ++ *(uint16x8_t *)(dst + 3*dstride) = b3; ++ *(uint16x8_t *)(dst + 4*dstride) = b4; ++ *(uint16x8_t *)(dst + 5*dstride) = b5; ++ *(uint16x8_t *)(dst + 6*dstride) = b6; ++ *(uint16x8_t *)(dst + 7*dstride) = b7; ++} ++ ++void transpose16x16(uint16_t* dst, const uint16_t* src, intptr_t dstride, intptr_t sstride) ++{ ++ //assumption: there is no partial overlap ++ transpose8x8(dst,src,dstride,sstride); ++ transpose8x8(dst+8*dstride+8,src+8*sstride+8,dstride,sstride); ++ ++ if (dst == src) ++ { ++ uint16_t tmp[8*8]; ++ transpose8x8(tmp,src + 8,8,sstride); ++ transpose8x8(dst + 8, src + 8*sstride,dstride,sstride); ++ for (int i=0;i<8;i++) COPY_16(dst+(8 + i)*dstride,tmp + 8*i); ++ } ++ else ++ { ++ transpose8x8(dst+8*dstride,src + 8,dstride,sstride); ++ transpose8x8(dst + 8, src + 8*sstride,dstride,sstride); ++ } ++ ++} ++ ++ ++ ++void transpose32x32(uint16_t* dst, const uint16_t* src, intptr_t dstride, intptr_t sstride) ++{ ++ //assumption: there is no partial overlap ++ for (int i=0;i<4;i++) ++ { ++ transpose8x8(dst+i*8*(1+dstride),src+i*8*(1+sstride),dstride,sstride); ++ for (int j=i+1;j<4;j++) ++ { ++ if (dst == src) ++ { ++ uint16_t tmp[8*8] __attribute__((aligned(64))); ++ transpose8x8(tmp,src + 8*i + 8*j*sstride,8,sstride); ++ transpose8x8(dst + 8*i + 8*j*dstride, src + 8*j + 8*i*sstride,dstride,sstride); ++ for (int k=0;k<8;k++) COPY_16(dst+ 8*j + (8*i+k)*dstride,tmp + 8*k); ++ } ++ else ++ { ++ transpose8x8(dst + 8*(j + i*dstride),src + 8*(i + j*sstride),dstride,sstride); ++ transpose8x8(dst + 8*(i + j*dstride),src + 8*(j + i*sstride),dstride,sstride); ++ } ++ ++ } ++ } ++} ++ ++ ++ ++ ++} ++ ++ ++ +diff -Naur ./source/common/arm64/arm64-utils.h ../x265_apple_patch/source/common/arm64/arm64-utils.h +--- ./source/common/arm64/arm64-utils.h 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/arm64-utils.h 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,14 @@ ++#ifndef __ARM64_UTILS_H__ ++#define __ARM64_UTILS_H__ ++ ++ ++namespace X265_NS { ++void transpose8x8(uint8_t* dst, const uint8_t* src, intptr_t dstride, intptr_t sstride); ++void transpose16x16(uint8_t* dst, const uint8_t* src, intptr_t dstride, intptr_t sstride); ++void transpose32x32(uint8_t* dst, const uint8_t* src, intptr_t dstride, intptr_t sstride); ++void transpose8x8(uint16_t* dst, const uint16_t* src, intptr_t dstride, intptr_t sstride); ++void transpose16x16(uint16_t* dst, const uint16_t* src, intptr_t dstride, intptr_t sstride); ++void transpose32x32(uint16_t* dst, const uint16_t* src, intptr_t dstride, intptr_t sstride); ++} ++ ++#endif +diff -Naur ./source/common/arm64/asm-primitives.cpp ../x265_apple_patch/source/common/arm64/asm-primitives.cpp +--- ./source/common/arm64/asm-primitives.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/asm-primitives.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,53 @@ ++/***************************************************************************** ++ * Copyright (C) 2013-2017 MulticoreWare, Inc ++ * ++ * Authors: Steve Borho ++ * Praveen Kumar Tiwari ++ * Min Chen ++ * Dnyaneshwar Gorade ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. ++ * ++ * This program is also available under a commercial proprietary license. ++ * For more information, contact us at license @ x265.com. ++ *****************************************************************************/ ++ ++#include "common.h" ++#include "primitives.h" ++#include "x265.h" ++#include "cpu.h" ++ ++#include "pixel-prim.h" ++#include "filter-prim.h" ++#include "dct-prim.h" ++#include "loopfilter-prim.h" ++#include "intrapred-prim.h" ++ ++namespace X265_NS { ++// private x265 namespace ++ ++void setupAssemblyPrimitives(EncoderPrimitives &p, int cpuMask) ++{ ++ if (cpuMask & X265_CPU_NEON) ++ { ++ setupPixelPrimitives_neon(p); ++ setupFilterPrimitives_neon(p); ++ setupDCTPrimitives_neon(p); ++ setupLoopFilterPrimitives_neon(p); ++ setupIntraPrimitives_neon(p); ++ } ++} ++ ++} // namespace X265_NS +diff -Naur ./source/common/arm64/dct-prim.cpp ../x265_apple_patch/source/common/arm64/dct-prim.cpp +--- ./source/common/arm64/dct-prim.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/dct-prim.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,933 @@ ++#include "dct-prim.h" ++ ++ ++#if HAVE_NEON ++ ++#include ++ ++ ++namespace { ++using namespace X265_NS; ++ ++ ++static int16x8_t rev16(const int16x8_t a) ++{ ++ static const int8x16_t tbl = {14,15,12,13,10,11,8,9,6,7,4,5,2,3,0,1}; ++ return vqtbx1q_u8(a,a,tbl); ++} ++ ++static int32x4_t rev32(const int32x4_t a) ++{ ++ static const int8x16_t tbl = {12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3}; ++ return vqtbx1q_u8(a,a,tbl); ++} ++ ++static void transpose_4x4x16(int16x4_t& x0,int16x4_t& x1,int16x4_t& x2,int16x4_t& x3) ++{ ++ int16x4_t s0,s1,s2,s3; ++ s0 = vtrn1_s32(x0,x2); ++ s1 = vtrn1_s32(x1,x3); ++ s2 = vtrn2_s32(x0,x2); ++ s3 = vtrn2_s32(x1,x3); ++ ++ x0 = vtrn1_s16(s0,s1); ++ x1 = vtrn2_s16(s0,s1); ++ x2 = vtrn1_s16(s2,s3); ++ x3 = vtrn2_s16(s2,s3); ++} ++ ++ ++ ++static int scanPosLast_opt(const uint16_t *scan, const coeff_t *coeff, uint16_t *coeffSign, uint16_t *coeffFlag, uint8_t *coeffNum, int numSig, const uint16_t* /*scanCG4x4*/, const int /*trSize*/) ++{ ++ ++ // This is an optimized function for scanPosLast, which removes the rmw dependency, once integrated into mainline x265, should replace reference implementation ++ // For clarity, left the original reference code in comments ++ int scanPosLast = 0; ++ ++ uint16_t cSign = 0; ++ uint16_t cFlag = 0; ++ uint8_t cNum = 0; ++ ++ uint32_t prevcgIdx = 0; ++ do ++ { ++ const uint32_t cgIdx = (uint32_t)scanPosLast >> MLS_CG_SIZE; ++ ++ const uint32_t posLast = scan[scanPosLast]; ++ ++ const int curCoeff = coeff[posLast]; ++ const uint32_t isNZCoeff = (curCoeff != 0); ++ /* ++ NOTE: the new algorithm is complicated, so I keep reference code here ++ uint32_t posy = posLast >> log2TrSize; ++ uint32_t posx = posLast - (posy << log2TrSize); ++ uint32_t blkIdx0 = ((posy >> MLS_CG_LOG2_SIZE) << codingParameters.log2TrSizeCG) + (posx >> MLS_CG_LOG2_SIZE); ++ const uint32_t blkIdx = ((posLast >> (2 * MLS_CG_LOG2_SIZE)) & ~maskPosXY) + ((posLast >> MLS_CG_LOG2_SIZE) & maskPosXY); ++ sigCoeffGroupFlag64 |= ((uint64_t)isNZCoeff << blkIdx); ++ */ ++ ++ // get L1 sig map ++ numSig -= isNZCoeff; ++ ++ if (scanPosLast % (1< 0); ++ ++ coeffSign[prevcgIdx] = cSign; ++ coeffFlag[prevcgIdx] = cFlag; ++ coeffNum[prevcgIdx] = cNum; ++ return scanPosLast - 1; ++} ++ ++ ++#if (MLS_CG_SIZE == 4) ++template ++static void nonPsyRdoQuant_neon(int16_t *m_resiDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, uint32_t blkPos) ++{ ++ const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; /* Represents scaling through forward transform */ ++ const int scaleBits = SCALE_BITS - 2 * transformShift; ++ const uint32_t trSize = 1 << log2TrSize; ++ ++ int64x2_t vcost_sum_0 = vdupq_n_s64(0); ++ int64x2_t vcost_sum_1 = vdupq_n_s64(0); ++ for (int y = 0; y < MLS_CG_SIZE; y++) ++ { ++ int16x4_t in = *(int16x4_t *)&m_resiDctCoeff[blkPos]; ++ int32x4_t mul = vmull_s16(in,in); ++ int64x2_t cost0, cost1; ++ cost0 = vshll_n_s32(vget_low_s32(mul),scaleBits); ++ cost1 = vshll_high_n_s32(mul,scaleBits); ++ *(int64x2_t *)&costUncoded[blkPos+0] = cost0; ++ *(int64x2_t *)&costUncoded[blkPos+2] = cost1; ++ vcost_sum_0 = vaddq_s64(vcost_sum_0,cost0); ++ vcost_sum_1 = vaddq_s64(vcost_sum_1,cost1); ++ blkPos += trSize; ++ } ++ int64_t sum = vaddvq_s64(vaddq_s64(vcost_sum_0,vcost_sum_1)); ++ *totalUncodedCost += sum; ++ *totalRdCost += sum; ++} ++ ++template ++static void psyRdoQuant_neon(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos) ++{ ++ const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; /* Represents scaling through forward transform */ ++ const int scaleBits = SCALE_BITS - 2 * transformShift; ++ const uint32_t trSize = 1 << log2TrSize; ++ //using preprocessor to bypass clang bug ++ const int max = X265_MAX(0, (2 * transformShift + 1)); ++ ++ int64x2_t vcost_sum_0 = vdupq_n_s64(0); ++ int64x2_t vcost_sum_1 = vdupq_n_s64(0); ++ int32x4_t vpsy = vdupq_n_s32(*psyScale); ++ for (int y = 0; y < MLS_CG_SIZE; y++) ++ { ++ int32x4_t signCoef = vmovl_s16(*(int16x4_t *)&m_resiDctCoeff[blkPos]); ++ int32x4_t predictedCoef = vsubq_s32(vmovl_s16(*(int16x4_t *)&m_fencDctCoeff[blkPos]),signCoef); ++ int64x2_t cost0, cost1; ++ cost0 = vmull_s32(vget_low_s32(signCoef),vget_low_s32(signCoef)); ++ cost1 = vmull_high_s32(signCoef,signCoef); ++ cost0 = vshlq_n_s64(cost0,scaleBits); ++ cost1 = vshlq_n_s64(cost1,scaleBits); ++ int64x2_t neg0 = vmull_s32(vget_low_s32(predictedCoef),vget_low_s32(vpsy)); ++ int64x2_t neg1 = vmull_high_s32(predictedCoef,vpsy); ++ if (max > 0) { ++ int64x2_t shift = vdupq_n_s64(-max); ++ neg0 = vshlq_s64(neg0,shift); ++ neg1 = vshlq_s64(neg1,shift); ++ } ++ cost0 = vsubq_s64(cost0,neg0); ++ cost1 = vsubq_s64(cost1,neg1); ++ *(int64x2_t *)&costUncoded[blkPos+0] = cost0; ++ *(int64x2_t *)&costUncoded[blkPos+2] = cost1; ++ vcost_sum_0 = vaddq_s64(vcost_sum_0,cost0); ++ vcost_sum_1 = vaddq_s64(vcost_sum_1,cost1); ++ ++ blkPos += trSize; ++ } ++ int64_t sum = vaddvq_s64(vaddq_s64(vcost_sum_0,vcost_sum_1)); ++ *totalUncodedCost += sum; ++ *totalRdCost += sum; ++} ++ ++#else ++ #error "MLS_CG_SIZE must be 4 for neon version" ++#endif ++ ++ ++ ++template ++int count_nonzero_neon(const int16_t* quantCoeff) ++{ ++ X265_CHECK(((intptr_t)quantCoeff & 15) == 0, "quant buffer not aligned\n"); ++ int count = 0; ++ int16x8_t vcount = vdupq_n_s16(0); ++ const int numCoeff = trSize * trSize; ++ int i = 0; ++ for (; (i + 8) <= numCoeff; i+=8) ++ { ++ int16x8_t in = *(int16x8_t*)&quantCoeff[i]; ++ vcount = vaddq_s16(vcount,vtstq_s16(in,in)); ++ } ++ for (; i < numCoeff; i++) ++ { ++ count += quantCoeff[i] != 0; ++ } ++ ++ return count - vaddvq_s16(vcount); ++} ++ ++template ++uint32_t copy_count_neon(int16_t* coeff, const int16_t* residual, intptr_t resiStride) ++{ ++ uint32_t numSig = 0; ++ int16x8_t vcount = vdupq_n_s16(0); ++ for (int k = 0; k < trSize; k++) ++ { ++ int j = 0; ++ for (; (j + 8) <= trSize; j+=8) ++ { ++ int16x8_t in = *(int16x8_t*)&residual[j]; ++ *(int16x8_t*)&coeff[j] = in; ++ vcount = vaddq_s16(vcount,vtstq_s16(in,in)); ++ } ++ for (; j < trSize; j++) ++ { ++ coeff[j] = residual[j]; ++ numSig += (residual[j] != 0); ++ } ++ residual += resiStride; ++ coeff += trSize; ++ } ++ ++ return numSig - vaddvq_s16(vcount); ++} ++ ++ ++static void partialButterfly16(const int16_t* src, int16_t* dst, int shift, int line) ++{ ++ int j, k; ++ int32x4_t E[2], O[2]; ++ int32x4_t EE, EO; ++ int32x2_t EEE, EEO; ++ const int add = 1 << (shift - 1); ++ const int32x4_t _vadd = {add,0}; ++ ++ for (j = 0; j < line; j++) ++ { ++ int16x8_t in0 = *(int16x8_t *)src; ++ int16x8_t in1 = rev16(*(int16x8_t *)&src[8]); ++ ++ E[0] = vaddl_s16(vget_low_s16(in0),vget_low_s16(in1)); ++ O[0] = vsubl_s16(vget_low_s16(in0),vget_low_s16(in1)); ++ E[1] = vaddl_high_s16(in0,in1); ++ O[1] = vsubl_high_s16(in0,in1); ++ ++ for (k = 1; k < 16; k += 2) ++ { ++ int32x4_t c0 = vmovl_s16(*(int16x4_t *)&g_t16[k][0]); ++ int32x4_t c1 = vmovl_s16(*(int16x4_t *)&g_t16[k][4]); ++ ++ int32x4_t res = _vadd; ++ res = vmlaq_s32(res,c0,O[0]); ++ res = vmlaq_s32(res,c1,O[1]); ++ dst[k * line] = (int16_t)(vaddvq_s32(res) >> shift); ++ } ++ ++ /* EE and EO */ ++ EE = vaddq_s32(E[0],rev32(E[1])); ++ EO = vsubq_s32(E[0],rev32(E[1])); ++ ++ for (k = 2; k < 16; k += 4) ++ { ++ int32x4_t c0 = vmovl_s16(*(int16x4_t *)&g_t16[k][0]); ++ int32x4_t res = _vadd; ++ res = vmlaq_s32(res,c0,EO); ++ dst[k * line] = (int16_t)(vaddvq_s32(res) >> shift); ++ } ++ ++ /* EEE and EEO */ ++ EEE[0] = EE[0] + EE[3]; ++ EEO[0] = EE[0] - EE[3]; ++ EEE[1] = EE[1] + EE[2]; ++ EEO[1] = EE[1] - EE[2]; ++ ++ dst[0] = (int16_t)((g_t16[0][0] * EEE[0] + g_t16[0][1] * EEE[1] + add) >> shift); ++ dst[8 * line] = (int16_t)((g_t16[8][0] * EEE[0] + g_t16[8][1] * EEE[1] + add) >> shift); ++ dst[4 * line] = (int16_t)((g_t16[4][0] * EEO[0] + g_t16[4][1] * EEO[1] + add) >> shift); ++ dst[12 * line] = (int16_t)((g_t16[12][0] * EEO[0] + g_t16[12][1] * EEO[1] + add) >> shift); ++ ++ ++ src += 16; ++ dst++; ++ } ++} ++ ++ ++static void partialButterfly32(const int16_t* src, int16_t* dst, int shift, int line) ++{ ++ int j, k; ++ const int add = 1 << (shift - 1); ++ ++ ++ for (j = 0; j < line; j++) ++ { ++ int32x4_t VE[4], VO0,VO1,VO2,VO3; ++ int32x4_t VEE[2], VEO[2]; ++ int32x4_t VEEE, VEEO; ++ int EEEE[2], EEEO[2]; ++ ++ int16x8x4_t inputs; ++ inputs = *(int16x8x4_t *)&src[0]; ++ int16x8x4_t in_rev; ++ ++ in_rev.val[1] = rev16(inputs.val[2]); ++ in_rev.val[0] = rev16(inputs.val[3]); ++ ++ VE[0] = vaddl_s16(vget_low_s16(inputs.val[0]),vget_low_s16(in_rev.val[0])); ++ VE[1] = vaddl_high_s16(inputs.val[0],in_rev.val[0]); ++ VO0 = vsubl_s16(vget_low_s16(inputs.val[0]),vget_low_s16(in_rev.val[0])); ++ VO1 = vsubl_high_s16(inputs.val[0],in_rev.val[0]); ++ VE[2] = vaddl_s16(vget_low_s16(inputs.val[1]),vget_low_s16(in_rev.val[1])); ++ VE[3] = vaddl_high_s16(inputs.val[1],in_rev.val[1]); ++ VO2 = vsubl_s16(vget_low_s16(inputs.val[1]),vget_low_s16(in_rev.val[1])); ++ VO3 = vsubl_high_s16(inputs.val[1],in_rev.val[1]); ++ ++ for (k = 1; k < 32; k += 2) ++ { ++ int32x4_t c0 = vmovl_s16(*(int16x4_t *)&g_t32[k][0]); ++ int32x4_t c1 = vmovl_s16(*(int16x4_t *)&g_t32[k][4]); ++ int32x4_t c2 = vmovl_s16(*(int16x4_t *)&g_t32[k][8]); ++ int32x4_t c3 = vmovl_s16(*(int16x4_t *)&g_t32[k][12]); ++ int32x4_t s = vmulq_s32(c0,VO0); ++ s = vmlaq_s32(s,c1,VO1); ++ s = vmlaq_s32(s,c2,VO2); ++ s = vmlaq_s32(s,c3,VO3); ++ ++ dst[k * line] = (int16_t)((vaddvq_s32(s) + add) >> shift); ++ ++ } ++ ++ int32x4_t rev_VE[2]; ++ ++ ++ rev_VE[0] = rev32(VE[3]); ++ rev_VE[1] = rev32(VE[2]); ++ ++ /* EE and EO */ ++ for (k = 0; k < 2; k++) ++ { ++ VEE[k] = vaddq_s32(VE[k],rev_VE[k]); ++ VEO[k] = vsubq_s32(VE[k],rev_VE[k]); ++ } ++ for (k = 2; k < 32; k += 4) ++ { ++ int32x4_t c0 = vmovl_s16(*(int16x4_t *)&g_t32[k][0]); ++ int32x4_t c1 = vmovl_s16(*(int16x4_t *)&g_t32[k][4]); ++ int32x4_t s = vmulq_s32(c0,VEO[0]); ++ s = vmlaq_s32(s,c1,VEO[1]); ++ ++ dst[k * line] = (int16_t)((vaddvq_s32(s) + add) >> shift); ++ ++ } ++ ++ int32x4_t tmp = rev32(VEE[1]); ++ VEEE = vaddq_s32(VEE[0],tmp); ++ VEEO = vsubq_s32(VEE[0],tmp); ++ for (k = 4; k < 32; k += 8) ++ { ++ int32x4_t c = vmovl_s16(*(int16x4_t *)&g_t32[k][0]); ++ int32x4_t s = vmulq_s32(c,VEEO); ++ ++ dst[k * line] = (int16_t)((vaddvq_s32(s) + add) >> shift); ++ } ++ ++ /* EEEE and EEEO */ ++ EEEE[0] = VEEE[0] + VEEE[3]; ++ EEEO[0] = VEEE[0] - VEEE[3]; ++ EEEE[1] = VEEE[1] + VEEE[2]; ++ EEEO[1] = VEEE[1] - VEEE[2]; ++ ++ dst[0] = (int16_t)((g_t32[0][0] * EEEE[0] + g_t32[0][1] * EEEE[1] + add) >> shift); ++ dst[16 * line] = (int16_t)((g_t32[16][0] * EEEE[0] + g_t32[16][1] * EEEE[1] + add) >> shift); ++ dst[8 * line] = (int16_t)((g_t32[8][0] * EEEO[0] + g_t32[8][1] * EEEO[1] + add) >> shift); ++ dst[24 * line] = (int16_t)((g_t32[24][0] * EEEO[0] + g_t32[24][1] * EEEO[1] + add) >> shift); ++ ++ ++ ++ src += 32; ++ dst++; ++ } ++} ++ ++static void partialButterfly8(const int16_t* src, int16_t* dst, int shift, int line) ++{ ++ int j, k; ++ int E[4], O[4]; ++ int EE[2], EO[2]; ++ int add = 1 << (shift - 1); ++ ++ for (j = 0; j < line; j++) ++ { ++ /* E and O*/ ++ for (k = 0; k < 4; k++) ++ { ++ E[k] = src[k] + src[7 - k]; ++ O[k] = src[k] - src[7 - k]; ++ } ++ ++ /* EE and EO */ ++ EE[0] = E[0] + E[3]; ++ EO[0] = E[0] - E[3]; ++ EE[1] = E[1] + E[2]; ++ EO[1] = E[1] - E[2]; ++ ++ dst[0] = (int16_t)((g_t8[0][0] * EE[0] + g_t8[0][1] * EE[1] + add) >> shift); ++ dst[4 * line] = (int16_t)((g_t8[4][0] * EE[0] + g_t8[4][1] * EE[1] + add) >> shift); ++ dst[2 * line] = (int16_t)((g_t8[2][0] * EO[0] + g_t8[2][1] * EO[1] + add) >> shift); ++ dst[6 * line] = (int16_t)((g_t8[6][0] * EO[0] + g_t8[6][1] * EO[1] + add) >> shift); ++ ++ dst[line] = (int16_t)((g_t8[1][0] * O[0] + g_t8[1][1] * O[1] + g_t8[1][2] * O[2] + g_t8[1][3] * O[3] + add) >> shift); ++ dst[3 * line] = (int16_t)((g_t8[3][0] * O[0] + g_t8[3][1] * O[1] + g_t8[3][2] * O[2] + g_t8[3][3] * O[3] + add) >> shift); ++ dst[5 * line] = (int16_t)((g_t8[5][0] * O[0] + g_t8[5][1] * O[1] + g_t8[5][2] * O[2] + g_t8[5][3] * O[3] + add) >> shift); ++ dst[7 * line] = (int16_t)((g_t8[7][0] * O[0] + g_t8[7][1] * O[1] + g_t8[7][2] * O[2] + g_t8[7][3] * O[3] + add) >> shift); ++ ++ src += 8; ++ dst++; ++ } ++} ++ ++static void partialButterflyInverse4(const int16_t* src, int16_t* dst, int shift, int line) ++{ ++ int j; ++ int E[2], O[2]; ++ int add = 1 << (shift - 1); ++ ++ for (j = 0; j < line; j++) ++ { ++ /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ ++ O[0] = g_t4[1][0] * src[line] + g_t4[3][0] * src[3 * line]; ++ O[1] = g_t4[1][1] * src[line] + g_t4[3][1] * src[3 * line]; ++ E[0] = g_t4[0][0] * src[0] + g_t4[2][0] * src[2 * line]; ++ E[1] = g_t4[0][1] * src[0] + g_t4[2][1] * src[2 * line]; ++ ++ /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ ++ dst[0] = (int16_t)(x265_clip3(-32768, 32767, (E[0] + O[0] + add) >> shift)); ++ dst[1] = (int16_t)(x265_clip3(-32768, 32767, (E[1] + O[1] + add) >> shift)); ++ dst[2] = (int16_t)(x265_clip3(-32768, 32767, (E[1] - O[1] + add) >> shift)); ++ dst[3] = (int16_t)(x265_clip3(-32768, 32767, (E[0] - O[0] + add) >> shift)); ++ ++ src++; ++ dst += 4; ++ } ++} ++ ++ ++ ++static void partialButterflyInverse16_neon(const int16_t* src, int16_t* orig_dst, int shift, int line) ++{ ++#define FMAK(x,l) s[l] = vmlal_lane_s16(s[l],*(int16x4_t*)&src[(x)*line],*(int16x4_t *)&g_t16[x][k],l) ++#define MULK(x,l) vmull_lane_s16(*(int16x4_t*)&src[x*line],*(int16x4_t *)&g_t16[x][k],l); ++#define ODD3_15(k) FMAK(3,k);FMAK(5,k);FMAK(7,k);FMAK(9,k);FMAK(11,k);FMAK(13,k);FMAK(15,k); ++#define EVEN6_14_STEP4(k) FMAK(6,k);FMAK(10,k);FMAK(14,k); ++ ++ ++ int j, k; ++ int32x4_t E[8], O[8]; ++ int32x4_t EE[4], EO[4]; ++ int32x4_t EEE[2], EEO[2]; ++ const int add = 1 << (shift - 1); ++ ++ ++#pragma unroll(4) ++ for (j = 0; j < line; j+=4) ++ { ++ /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ ++ ++#pragma unroll(2) ++ for (k=0;k<2;k++) { ++ int32x4_t s; ++ s = vmull_s16(vdup_n_s16(g_t16[4][k]),*(int16x4_t*)&src[4*line]);; ++ EEO[k] = vmlal_s16(s,vdup_n_s16(g_t16[12][k]),*(int16x4_t*)&src[(12)*line]); ++ s = vmull_s16(vdup_n_s16(g_t16[0][k]),*(int16x4_t*)&src[0*line]);; ++ EEE[k] = vmlal_s16(s,vdup_n_s16(g_t16[8][k]),*(int16x4_t*)&src[(8)*line]); ++ } ++ ++ /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ ++ EE[0] = vaddq_s32(EEE[0] , EEO[0]); ++ EE[2] = vsubq_s32(EEE[1] , EEO[1]); ++ EE[1] = vaddq_s32(EEE[1] , EEO[1]); ++ EE[3] = vsubq_s32(EEE[0] , EEO[0]); ++ ++ ++#pragma unroll(1) ++ for (k = 0; k < 4; k+=4) ++ { ++ int32x4_t s[4]; ++ s[0] = MULK(2,0); ++ s[1] = MULK(2,1); ++ s[2] = MULK(2,2); ++ s[3] = MULK(2,3); ++ ++ EVEN6_14_STEP4(0); ++ EVEN6_14_STEP4(1); ++ EVEN6_14_STEP4(2); ++ EVEN6_14_STEP4(3); ++ ++ EO[k] = s[0]; ++ EO[k+1] = s[1]; ++ EO[k+2] = s[2]; ++ EO[k+3] = s[3]; ++ } ++ ++ ++ ++ static const int32x4_t min = vdupq_n_s32(-32768); ++ static const int32x4_t max = vdupq_n_s32(32767); ++ const int32x4_t minus_shift = vdupq_n_s32(-shift); ++ ++#pragma unroll(4) ++ for (k = 0; k < 4; k++) ++ { ++ E[k] = vaddq_s32(EE[k] , EO[k]); ++ E[k + 4] = vsubq_s32(EE[3 - k] , EO[3 - k]); ++ } ++ ++#pragma unroll(2) ++ for (k = 0; k < 8; k+=4) ++ { ++ int32x4_t s[4]; ++ s[0] = MULK(1,0); ++ s[1] = MULK(1,1); ++ s[2] = MULK(1,2); ++ s[3] = MULK(1,3); ++ ODD3_15(0); ++ ODD3_15(1); ++ ODD3_15(2); ++ ODD3_15(3); ++ O[k] = s[0]; ++ O[k+1] = s[1]; ++ O[k+2] = s[2]; ++ O[k+3] = s[3]; ++ int32x4_t t; ++ int16x4_t x0,x1,x2,x3; ++ ++ E[k] = vaddq_s32(vdupq_n_s32(add),E[k]); ++ t = vaddq_s32(E[k],O[k]); ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x0 = vmovn_s32(t); ++ ++ E[k+1] = vaddq_s32(vdupq_n_s32(add),E[k+1]); ++ t = vaddq_s32(E[k+1],O[k+1]); ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x1 = vmovn_s32(t); ++ ++ E[k+2] = vaddq_s32(vdupq_n_s32(add),E[k+2]); ++ t = vaddq_s32(E[k+2],O[k+2]); ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x2 = vmovn_s32(t); ++ ++ E[k+3] = vaddq_s32(vdupq_n_s32(add),E[k+3]); ++ t = vaddq_s32(E[k+3],O[k+3]); ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x3 = vmovn_s32(t); ++ ++ transpose_4x4x16(x0,x1,x2,x3); ++ *(int16x4_t*)&orig_dst[0*16+k] = x0; ++ *(int16x4_t*)&orig_dst[1*16+k] = x1; ++ *(int16x4_t*)&orig_dst[2*16+k] = x2; ++ *(int16x4_t*)&orig_dst[3*16+k] = x3; ++ } ++ ++ ++#pragma unroll(2) ++ for (k = 0; k < 8; k+=4) ++ { ++ int32x4_t t; ++ int16x4_t x0,x1,x2,x3; ++ ++ t = vsubq_s32(E[7-k],O[7-k]); ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x0 = vmovn_s32(t); ++ ++ t = vsubq_s32(E[6-k],O[6-k]); ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x1 = vmovn_s32(t); ++ ++ t = vsubq_s32(E[5-k],O[5-k]); ++ ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x2 = vmovn_s32(t); ++ ++ t = vsubq_s32(E[4-k],O[4-k]); ++ t = vshlq_s32(t,minus_shift); ++ t = vmaxq_s32(t,min); ++ t = vminq_s32(t,max); ++ x3 = vmovn_s32(t); ++ ++ transpose_4x4x16(x0,x1,x2,x3); ++ *(int16x4_t*)&orig_dst[0*16+k+8] = x0; ++ *(int16x4_t*)&orig_dst[1*16+k+8] = x1; ++ *(int16x4_t*)&orig_dst[2*16+k+8] = x2; ++ *(int16x4_t*)&orig_dst[3*16+k+8] = x3; ++ } ++ orig_dst += 4*16; ++ src+=4; ++ } ++ ++#undef MUL ++#undef FMA ++#undef FMAK ++#undef MULK ++#undef ODD3_15 ++#undef EVEN6_14_STEP4 ++ ++ ++} ++ ++ ++ ++static void partialButterflyInverse32_neon(const int16_t* src, int16_t* orig_dst, int shift, int line) ++{ ++#define MUL(x) vmull_s16(vdup_n_s16(g_t32[x][k]),*(int16x4_t*)&src[x*line]); ++#define FMA(x) s = vmlal_s16(s,vdup_n_s16(g_t32[x][k]),*(int16x4_t*)&src[(x)*line]) ++#define FMAK(x,l) s[l] = vmlal_lane_s16(s[l],*(int16x4_t*)&src[(x)*line],*(int16x4_t *)&g_t32[x][k],l) ++#define MULK(x,l) vmull_lane_s16(*(int16x4_t*)&src[x*line],*(int16x4_t *)&g_t32[x][k],l); ++#define ODD31(k) FMAK(3,k);FMAK(5,k);FMAK(7,k);FMAK(9,k);FMAK(11,k);FMAK(13,k);FMAK(15,k);FMAK(17,k);FMAK(19,k);FMAK(21,k);FMAK(23,k);FMAK(25,k);FMAK(27,k);FMAK(29,k);FMAK(31,k); ++ ++#define ODD15(k) FMAK(6,k);FMAK(10,k);FMAK(14,k);FMAK(18,k);FMAK(22,k);FMAK(26,k);FMAK(30,k); ++#define ODD7(k) FMAK(12,k);FMAK(20,k);FMAK(28,k); ++ ++ ++ int j, k; ++ int32x4_t E[16], O[16]; ++ int32x4_t EE[8], EO[8]; ++ int32x4_t EEE[4], EEO[4]; ++ int32x4_t EEEE[2], EEEO[2]; ++ int16x4_t dst[32]; ++ int add = 1 << (shift - 1); ++ ++#pragma unroll (8) ++ for (j = 0; j < line; j+=4) ++ { ++#pragma unroll (4) ++ for (k = 0; k < 16; k+=4) ++ { ++ int32x4_t s[4]; ++ s[0] = MULK(1,0); ++ s[1] = MULK(1,1); ++ s[2] = MULK(1,2); ++ s[3] = MULK(1,3); ++ ODD31(0); ++ ODD31(1); ++ ODD31(2); ++ ODD31(3); ++ O[k] = s[0]; ++ O[k+1] = s[1]; ++ O[k+2] = s[2]; ++ O[k+3] = s[3]; ++ ++ ++ } ++ ++ ++#pragma unroll (2) ++ for (k = 0; k < 8; k+=4) ++ { ++ int32x4_t s[4]; ++ s[0] = MULK(2,0); ++ s[1] = MULK(2,1); ++ s[2] = MULK(2,2); ++ s[3] = MULK(2,3); ++ ++ ODD15(0); ++ ODD15(1); ++ ODD15(2); ++ ODD15(3); ++ ++ EO[k] = s[0]; ++ EO[k+1] = s[1]; ++ EO[k+2] = s[2]; ++ EO[k+3] = s[3]; ++ } ++ ++ ++ for (k = 0; k < 4; k+=4) ++ { ++ int32x4_t s[4]; ++ s[0] = MULK(4,0); ++ s[1] = MULK(4,1); ++ s[2] = MULK(4,2); ++ s[3] = MULK(4,3); ++ ++ ODD7(0); ++ ODD7(1); ++ ODD7(2); ++ ODD7(3); ++ ++ EEO[k] = s[0]; ++ EEO[k+1] = s[1]; ++ EEO[k+2] = s[2]; ++ EEO[k+3] = s[3]; ++ } ++ ++#pragma unroll (2) ++ for (k=0;k<2;k++) { ++ int32x4_t s; ++ s = MUL(8); ++ EEEO[k] = FMA(24); ++ s = MUL(0); ++ EEEE[k] = FMA(16); ++ } ++ /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ ++ EEE[0] = vaddq_s32(EEEE[0],EEEO[0]); ++ EEE[3] = vsubq_s32(EEEE[0],EEEO[0]); ++ EEE[1] = vaddq_s32(EEEE[1],EEEO[1]); ++ EEE[2] = vsubq_s32(EEEE[1],EEEO[1]); ++ ++#pragma unroll (4) ++ for (k = 0; k < 4; k++) ++ { ++ EE[k] = vaddq_s32(EEE[k],EEO[k]); ++ EE[k + 4] = vsubq_s32((EEE[3 - k]), (EEO[3 - k])); ++ } ++ ++#pragma unroll (8) ++ for (k = 0; k < 8; k++) ++ { ++ E[k] = vaddq_s32(EE[k],EO[k]); ++ E[k + 8] = vsubq_s32((EE[7 - k]),(EO[7 - k])); ++ } ++ ++ static const int32x4_t min = vdupq_n_s32(-32768); ++ static const int32x4_t max = vdupq_n_s32(32767); ++ ++ ++ ++#pragma unroll (16) ++ for (k = 0; k < 16; k++) ++ { ++ int32x4_t adde = vaddq_s32(vdupq_n_s32(add),E[k]); ++ int32x4_t s = vaddq_s32(adde,O[k]); ++ s = vshlq_s32(s,vdupq_n_s32(-shift)); ++ s = vmaxq_s32(s,min); ++ s = vminq_s32(s,max); ++ ++ ++ ++ dst[k] = vmovn_s32(s); ++ adde = vaddq_s32(vdupq_n_s32(add),(E[15-k])); ++ s =vsubq_s32(adde,(O[15-k])); ++ s = vshlq_s32(s,vdupq_n_s32(-shift)); ++ s = vmaxq_s32(s,min); ++ s = vminq_s32(s,max); ++ ++ dst[k+16] = vmovn_s32(s); ++ } ++ ++ ++#pragma unroll (8) ++ for (k = 0; k < 32; k+=4) ++ { ++ int16x4_t x0 = dst[k+0]; ++ int16x4_t x1 = dst[k+1]; ++ int16x4_t x2 = dst[k+2]; ++ int16x4_t x3 = dst[k+3]; ++ transpose_4x4x16(x0,x1,x2,x3); ++ *(int16x4_t*)&orig_dst[0*32+k] = x0; ++ *(int16x4_t*)&orig_dst[1*32+k] = x1; ++ *(int16x4_t*)&orig_dst[2*32+k] = x2; ++ *(int16x4_t*)&orig_dst[3*32+k] = x3; ++ } ++ orig_dst += 4*32; ++ src += 4; ++ } ++#undef MUL ++#undef FMA ++#undef FMAK ++#undef MULK ++#undef ODD31 ++#undef ODD15 ++#undef ODD7 ++ ++} ++ ++ ++static void dct8_neon(const int16_t* src, int16_t* dst, intptr_t srcStride) ++{ ++ const int shift_1st = 2 + X265_DEPTH - 8; ++ const int shift_2nd = 9; ++ ++ ALIGN_VAR_32(int16_t, coef[8 * 8]); ++ ALIGN_VAR_32(int16_t, block[8 * 8]); ++ ++ for (int i = 0; i < 8; i++) ++ { ++ memcpy(&block[i * 8], &src[i * srcStride], 8 * sizeof(int16_t)); ++ } ++ ++ partialButterfly8(block, coef, shift_1st, 8); ++ partialButterfly8(coef, dst, shift_2nd, 8); ++} ++ ++static void dct16_neon(const int16_t* src, int16_t* dst, intptr_t srcStride) ++{ ++ const int shift_1st = 3 + X265_DEPTH - 8; ++ const int shift_2nd = 10; ++ ++ ALIGN_VAR_32(int16_t, coef[16 * 16]); ++ ALIGN_VAR_32(int16_t, block[16 * 16]); ++ ++ for (int i = 0; i < 16; i++) ++ { ++ memcpy(&block[i * 16], &src[i * srcStride], 16 * sizeof(int16_t)); ++ } ++ ++ partialButterfly16(block, coef, shift_1st, 16); ++ partialButterfly16(coef, dst, shift_2nd, 16); ++} ++ ++static void dct32_neon(const int16_t* src, int16_t* dst, intptr_t srcStride) ++{ ++ const int shift_1st = 4 + X265_DEPTH - 8; ++ const int shift_2nd = 11; ++ ++ ALIGN_VAR_32(int16_t, coef[32 * 32]); ++ ALIGN_VAR_32(int16_t, block[32 * 32]); ++ ++ for (int i = 0; i < 32; i++) ++ { ++ memcpy(&block[i * 32], &src[i * srcStride], 32 * sizeof(int16_t)); ++ } ++ ++ partialButterfly32(block, coef, shift_1st, 32); ++ partialButterfly32(coef, dst, shift_2nd, 32); ++} ++ ++static void idct4_neon(const int16_t* src, int16_t* dst, intptr_t dstStride) ++{ ++ const int shift_1st = 7; ++ const int shift_2nd = 12 - (X265_DEPTH - 8); ++ ++ ALIGN_VAR_32(int16_t, coef[4 * 4]); ++ ALIGN_VAR_32(int16_t, block[4 * 4]); ++ ++ partialButterflyInverse4(src, coef, shift_1st, 4); // Forward DST BY FAST ALGORITHM, block input, coef output ++ partialButterflyInverse4(coef, block, shift_2nd, 4); // Forward DST BY FAST ALGORITHM, coef input, coeff output ++ ++ for (int i = 0; i < 4; i++) ++ { ++ memcpy(&dst[i * dstStride], &block[i * 4], 4 * sizeof(int16_t)); ++ } ++} ++ ++static void idct16_neon(const int16_t* src, int16_t* dst, intptr_t dstStride) ++{ ++ const int shift_1st = 7; ++ const int shift_2nd = 12 - (X265_DEPTH - 8); ++ ++ ALIGN_VAR_32(int16_t, coef[16 * 16]); ++ ALIGN_VAR_32(int16_t, block[16 * 16]); ++ ++ partialButterflyInverse16_neon(src, coef, shift_1st, 16); ++ partialButterflyInverse16_neon(coef, block, shift_2nd, 16); ++ ++ for (int i = 0; i < 16; i++) ++ { ++ memcpy(&dst[i * dstStride], &block[i * 16], 16 * sizeof(int16_t)); ++ } ++} ++ ++static void idct32_neon(const int16_t* src, int16_t* dst, intptr_t dstStride) ++{ ++ const int shift_1st = 7; ++ const int shift_2nd = 12 - (X265_DEPTH - 8); ++ ++ ALIGN_VAR_32(int16_t, coef[32 * 32]); ++ ALIGN_VAR_32(int16_t, block[32 * 32]); ++ ++ partialButterflyInverse32_neon(src, coef, shift_1st, 32); ++ partialButterflyInverse32_neon(coef, block, shift_2nd, 32); ++ ++ for (int i = 0; i < 32; i++) ++ { ++ memcpy(&dst[i * dstStride], &block[i * 32], 32 * sizeof(int16_t)); ++ } ++} ++ ++ ++ ++} ++ ++namespace X265_NS { ++// x265 private namespace ++void setupDCTPrimitives_neon(EncoderPrimitives& p) { ++ p.cu[BLOCK_4x4].nonPsyRdoQuant = nonPsyRdoQuant_neon<2>; ++ p.cu[BLOCK_8x8].nonPsyRdoQuant = nonPsyRdoQuant_neon<3>; ++ p.cu[BLOCK_16x16].nonPsyRdoQuant = nonPsyRdoQuant_neon<4>; ++ p.cu[BLOCK_32x32].nonPsyRdoQuant = nonPsyRdoQuant_neon<5>; ++ p.cu[BLOCK_4x4].psyRdoQuant = psyRdoQuant_neon<2>; ++ p.cu[BLOCK_8x8].psyRdoQuant = psyRdoQuant_neon<3>; ++ p.cu[BLOCK_16x16].psyRdoQuant = psyRdoQuant_neon<4>; ++ p.cu[BLOCK_32x32].psyRdoQuant = psyRdoQuant_neon<5>; ++ p.cu[BLOCK_8x8].dct = dct8_neon; ++ p.cu[BLOCK_16x16].dct = dct16_neon; ++ p.cu[BLOCK_32x32].dct = dct32_neon; ++ p.cu[BLOCK_4x4].idct = idct4_neon; ++ p.cu[BLOCK_16x16].idct = idct16_neon; ++ p.cu[BLOCK_32x32].idct = idct32_neon; ++ p.cu[BLOCK_4x4].count_nonzero = count_nonzero_neon<4>; ++ p.cu[BLOCK_8x8].count_nonzero = count_nonzero_neon<8>; ++ p.cu[BLOCK_16x16].count_nonzero = count_nonzero_neon<16>; ++ p.cu[BLOCK_32x32].count_nonzero = count_nonzero_neon<32>; ++ ++ p.cu[BLOCK_4x4].copy_cnt = copy_count_neon<4>; ++ p.cu[BLOCK_8x8].copy_cnt = copy_count_neon<8>; ++ p.cu[BLOCK_16x16].copy_cnt = copy_count_neon<16>; ++ p.cu[BLOCK_32x32].copy_cnt = copy_count_neon<32>; ++ p.cu[BLOCK_4x4].psyRdoQuant_1p = nonPsyRdoQuant_neon<2>; ++ p.cu[BLOCK_4x4].psyRdoQuant_2p = psyRdoQuant_neon<2>; ++ p.cu[BLOCK_8x8].psyRdoQuant_1p = nonPsyRdoQuant_neon<3>; ++ p.cu[BLOCK_8x8].psyRdoQuant_2p = psyRdoQuant_neon<3>; ++ p.cu[BLOCK_16x16].psyRdoQuant_1p = nonPsyRdoQuant_neon<4>; ++ p.cu[BLOCK_16x16].psyRdoQuant_2p = psyRdoQuant_neon<4>; ++ p.cu[BLOCK_32x32].psyRdoQuant_1p = nonPsyRdoQuant_neon<5>; ++ p.cu[BLOCK_32x32].psyRdoQuant_2p = psyRdoQuant_neon<5>; ++ ++ p.scanPosLast =scanPosLast_opt; ++ ++} ++}; ++ ++ ++ ++#endif +diff -Naur ./source/common/arm64/dct-prim.h ../x265_apple_patch/source/common/arm64/dct-prim.h +--- ./source/common/arm64/dct-prim.h 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/dct-prim.h 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,18 @@ ++#ifndef __DCT_PRIM_NEON_H__ ++#define __DCT_PRIM_NEON_H__ ++ ++ ++#include "common.h" ++#include "primitives.h" ++#include "contexts.h" // costCoeffNxN_c ++#include "threading.h" // CLZ ++ ++namespace X265_NS { ++// x265 private namespace ++void setupDCTPrimitives_neon(EncoderPrimitives& p); ++}; ++ ++ ++ ++#endif ++ +diff -Naur ./source/common/arm64/filter-prim.cpp ../x265_apple_patch/source/common/arm64/filter-prim.cpp +--- ./source/common/arm64/filter-prim.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/filter-prim.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,797 @@ ++ ++#if HAVE_NEON ++ ++#include "filter-prim.h" ++#include ++ ++namespace { ++ ++using namespace X265_NS; ++ ++ ++template ++void filterPixelToShort_neon(const pixel* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride) ++{ ++ const int shift = IF_INTERNAL_PREC - X265_DEPTH; ++ int row, col; ++ const int16x8_t off = vdupq_n_s16(IF_INTERNAL_OFFS); ++ for (row = 0; row < height; row++) ++ { ++ ++ for (col = 0; col < width; col+=8) ++ { ++ int16x8_t in; ++ ++#if HIGH_BIT_DEPTH ++ in = *(int16x8_t *)&src[col]; ++#else ++ in = vmovl_u8(*(uint8x8_t *)&src[col]); ++#endif ++ ++ int16x8_t tmp = vshlq_n_s16(in,shift); ++ tmp = vsubq_s16(tmp,off); ++ *(int16x8_t *)&dst[col] = tmp; ++ ++ } ++ ++ src += srcStride; ++ dst += dstStride; ++ } ++} ++ ++ ++template ++void interp_horiz_pp_neon(const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx) ++{ ++ const int16_t* coeff = (N == 4) ? g_chromaFilter[coeffIdx] : g_lumaFilter[coeffIdx]; ++ int headRoom = IF_FILTER_PREC; ++ int offset = (1 << (headRoom - 1)); ++ uint16_t maxVal = (1 << X265_DEPTH) - 1; ++ int cStride = 1; ++ ++ src -= (N / 2 - 1) * cStride; ++ int16x8_t vc; ++ vc = *(int16x8_t *)coeff; ++ int16x4_t low_vc = vget_low_s16(vc); ++ int16x4_t high_vc = vget_high_s16(vc); ++ ++ const int32x4_t voffset = vdupq_n_s32(offset); ++ const int32x4_t vhr = vdupq_n_s32(-headRoom); ++ ++ int row, col; ++ for (row = 0; row < height; row++) ++ { ++ for (col = 0; col < width; col+=8) ++ { ++ int32x4_t vsum1,vsum2; ++ ++ int16x8_t input[N]; ++ ++ for (int i=0;i ++void interp_horiz_ps_neon(const uint16_t * src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx, int isRowExt) ++{ ++ const int16_t* coeff = (N == 4) ? g_chromaFilter[coeffIdx] : g_lumaFilter[coeffIdx]; ++ const int headRoom = IF_INTERNAL_PREC - X265_DEPTH; ++ const int shift = IF_FILTER_PREC - headRoom; ++ const int offset = (unsigned)-IF_INTERNAL_OFFS << shift; ++ ++ int blkheight = height; ++ src -= N / 2 - 1; ++ ++ if (isRowExt) ++ { ++ src -= (N / 2 - 1) * srcStride; ++ blkheight += N - 1; ++ } ++ int32x4_t vc0 = vmovl_s16(*(int16x4_t *)coeff); ++ int32x4_t vc1; ++ ++ if (N ==8) { ++ vc1 = vmovl_s16(*(int16x4_t *)(coeff + 4)); ++ } ++ ++ const int32x4_t voffset = vdupq_n_s32(offset); ++ const int32x4_t vhr = vdupq_n_s32(-shift); ++ ++ int row, col; ++ for (row = 0; row < blkheight; row++) ++ { ++ for (col = 0; col < width; col+=4) ++ { ++ int32x4_t vsum; ++ ++ int32x4_t input[N]; ++ ++ for (int i=0;i ++void interp_horiz_ps_neon(const uint8_t* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx, int isRowExt) ++{ ++ const int16_t* coeff = (N == 4) ? g_chromaFilter[coeffIdx] : g_lumaFilter[coeffIdx]; ++ const int headRoom = IF_INTERNAL_PREC - X265_DEPTH; ++ const int shift = IF_FILTER_PREC - headRoom; ++ const int offset = (unsigned)-IF_INTERNAL_OFFS << shift; ++ ++ int blkheight = height; ++ src -= N / 2 - 1; ++ ++ if (isRowExt) ++ { ++ src -= (N / 2 - 1) * srcStride; ++ blkheight += N - 1; ++ } ++ int16x8_t vc; ++ vc = *(int16x8_t *)coeff; ++ ++ const int16x8_t voffset = vdupq_n_s16(offset); ++ const int16x8_t vhr = vdupq_n_s16(-shift); ++ ++ int row, col; ++ for (row = 0; row < blkheight; row++) ++ { ++ for (col = 0; col < width; col+=8) ++ { ++ int16x8_t vsum; ++ ++ int16x8_t input[N]; ++ ++ for (int i=0;i ++void interp_vert_ss_neon(const int16_t* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx) ++{ ++ const int16_t* c = (N == 8 ? g_lumaFilter[coeffIdx] : g_chromaFilter[coeffIdx]); ++ int shift = IF_FILTER_PREC; ++ src -= (N / 2 - 1) * srcStride; ++ int16x8_t vc; ++ vc = *(int16x8_t *)c; ++ int16x4_t low_vc = vget_low_s16(vc); ++ int16x4_t high_vc = vget_high_s16(vc); ++ ++ const int32x4_t vhr = vdupq_n_s32(-shift); ++ ++ int row, col; ++ for (row = 0; row < height; row++) ++ { ++ for (col = 0; col < width; col+=8) ++ { ++ int32x4_t vsum1,vsum2; ++ ++ int16x8_t input[N]; ++ ++ for (int i=0;i ++void interp_vert_pp_neon(const uint16_t* src, intptr_t srcStride, uint16_t* dst, intptr_t dstStride, int coeffIdx) ++{ ++ ++ const int16_t* c = (N == 4) ? g_chromaFilter[coeffIdx] : g_lumaFilter[coeffIdx]; ++ int shift = IF_FILTER_PREC; ++ int offset = 1 << (shift - 1); ++ const uint16_t maxVal = (1 << X265_DEPTH) - 1; ++ ++ src -= (N / 2 - 1) * srcStride; ++ int16x8_t vc; ++ vc = *(int16x8_t *)c; ++ int32x4_t low_vc = vmovl_s16(vget_low_s16(vc)); ++ int32x4_t high_vc = vmovl_s16(vget_high_s16(vc)); ++ ++ const int32x4_t voffset = vdupq_n_s32(offset); ++ const int32x4_t vhr = vdupq_n_s32(-shift); ++ ++ int row, col; ++ for (row = 0; row < height; row++) ++ { ++ for (col = 0; col < width; col+=4) ++ { ++ int32x4_t vsum; ++ ++ int32x4_t input[N]; ++ ++ for (int i=0;i ++void interp_vert_pp_neon(const uint8_t* src, intptr_t srcStride, uint8_t* dst, intptr_t dstStride, int coeffIdx) ++{ ++ ++ const int16_t* c = (N == 4) ? g_chromaFilter[coeffIdx] : g_lumaFilter[coeffIdx]; ++ int shift = IF_FILTER_PREC; ++ int offset = 1 << (shift - 1); ++ const uint16_t maxVal = (1 << X265_DEPTH) - 1; ++ ++ src -= (N / 2 - 1) * srcStride; ++ int16x8_t vc; ++ vc = *(int16x8_t *)c; ++ ++ const int16x8_t voffset = vdupq_n_s16(offset); ++ const int16x8_t vhr = vdupq_n_s16(-shift); ++ ++ int row, col; ++ for (row = 0; row < height; row++) ++ { ++ for (col = 0; col < width; col+=8) ++ { ++ int16x8_t vsum; ++ ++ int16x8_t input[N]; ++ ++ for (int i=0;i ++void interp_vert_ps_neon(const uint16_t* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx) ++{ ++ const int16_t* c = (N == 4) ? g_chromaFilter[coeffIdx] : g_lumaFilter[coeffIdx]; ++ int headRoom = IF_INTERNAL_PREC - X265_DEPTH; ++ int shift = IF_FILTER_PREC - headRoom; ++ int offset = (unsigned)-IF_INTERNAL_OFFS << shift; ++ src -= (N / 2 - 1) * srcStride; ++ ++ int16x8_t vc; ++ vc = *(int16x8_t *)c; ++ int32x4_t low_vc = vmovl_s16(vget_low_s16(vc)); ++ int32x4_t high_vc = vmovl_s16(vget_high_s16(vc)); ++ ++ const int32x4_t voffset = vdupq_n_s32(offset); ++ const int32x4_t vhr = vdupq_n_s32(-shift); ++ ++ int row, col; ++ for (row = 0; row < height; row++) ++ { ++ for (col = 0; col < width; col+=4) ++ { ++ int16x8_t vsum; ++ ++ int16x8_t input[N]; ++ ++ for (int i=0;i ++void interp_vert_ps_neon(const uint8_t* src, intptr_t srcStride, int16_t* dst, intptr_t dstStride, int coeffIdx) ++{ ++ const int16_t* c = (N == 4) ? g_chromaFilter[coeffIdx] : g_lumaFilter[coeffIdx]; ++ int headRoom = IF_INTERNAL_PREC - X265_DEPTH; ++ int shift = IF_FILTER_PREC - headRoom; ++ int offset = (unsigned)-IF_INTERNAL_OFFS << shift; ++ src -= (N / 2 - 1) * srcStride; ++ ++ int16x8_t vc; ++ vc = *(int16x8_t *)c; ++ ++ const int16x8_t voffset = vdupq_n_s16(offset); ++ const int16x8_t vhr = vdupq_n_s16(-shift); ++ ++ int row, col; ++ for (row = 0; row < height; row++) ++ { ++ for (col = 0; col < width; col+=8) ++ { ++ int16x8_t vsum; ++ ++ int16x8_t input[N]; ++ ++ for (int i=0;i ++void interp_vert_sp_neon(const int16_t* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int coeffIdx) ++{ ++ int headRoom = IF_INTERNAL_PREC - X265_DEPTH; ++ int shift = IF_FILTER_PREC + headRoom; ++ int offset = (1 << (shift - 1)) + (IF_INTERNAL_OFFS << IF_FILTER_PREC); ++ uint16_t maxVal = (1 << X265_DEPTH) - 1; ++ const int16_t* coeff = (N == 8 ? g_lumaFilter[coeffIdx] : g_chromaFilter[coeffIdx]); ++ ++ src -= (N / 2 - 1) * srcStride; ++ ++ int16x8_t vc; ++ vc = *(int16x8_t *)coeff; ++ int16x4_t low_vc = vget_low_s16(vc); ++ int16x4_t high_vc = vget_high_s16(vc); ++ ++ const int32x4_t voffset = vdupq_n_s32(offset); ++ const int32x4_t vhr = vdupq_n_s32(-shift); ++ ++ int row, col; ++ for (row = 0; row < height; row++) ++ { ++ for (col = 0; col < width; col+=8) ++ { ++ int32x4_t vsum1,vsum2; ++ ++ int16x8_t input[N]; ++ ++ for (int i=0;i ++void interp_hv_pp_neon(const pixel* src, intptr_t srcStride, pixel* dst, intptr_t dstStride, int idxX, int idxY) ++{ ++ ALIGN_VAR_32(int16_t, immed[width * (height + N - 1)]); ++ ++ interp_horiz_ps_neon(src, srcStride, immed, width, idxX, 1); ++ interp_vert_sp_neon(immed + (N / 2 - 1) * width, width, dst, dstStride, idxY); ++} ++ ++ ++ ++} ++ ++ ++ ++ ++namespace X265_NS { ++ #define CHROMA_420(W, H) \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].filter_hpp = interp_horiz_pp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].filter_hps = interp_horiz_ps_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].filter_vpp = interp_vert_pp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].filter_vps = interp_vert_ps_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].filter_vsp = interp_vert_sp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].filter_vss = interp_vert_ss_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].p2s[NONALIGNED] = filterPixelToShort_neon;\ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].p2s[ALIGNED] = filterPixelToShort_neon; ++ ++ #define CHROMA_422(W, H) \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].filter_hpp = interp_horiz_pp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].filter_hps = interp_horiz_ps_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].filter_vpp = interp_vert_pp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].filter_vps = interp_vert_ps_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].filter_vsp = interp_vert_sp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].filter_vss = interp_vert_ss_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].p2s[NONALIGNED] = filterPixelToShort_neon;\ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].p2s[ALIGNED] = filterPixelToShort_neon; ++ ++ #define CHROMA_444(W, H) \ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].filter_hpp = interp_horiz_pp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].filter_hps = interp_horiz_ps_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].filter_vpp = interp_vert_pp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].filter_vps = interp_vert_ps_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].filter_vsp = interp_vert_sp_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].filter_vss = interp_vert_ss_neon<4, W, H>; \ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].p2s[NONALIGNED] = filterPixelToShort_neon;\ ++ p.chroma[X265_CSP_I444].pu[LUMA_ ## W ## x ## H].p2s[ALIGNED] = filterPixelToShort_neon; ++ ++ #define LUMA(W, H) \ ++ p.pu[LUMA_ ## W ## x ## H].luma_hpp = interp_horiz_pp_neon<8, W, H>; \ ++ p.pu[LUMA_ ## W ## x ## H].luma_hps = interp_horiz_ps_neon<8, W, H>; \ ++ p.pu[LUMA_ ## W ## x ## H].luma_vpp = interp_vert_pp_neon<8, W, H>; \ ++ p.pu[LUMA_ ## W ## x ## H].luma_vps = interp_vert_ps_neon<8, W, H>; \ ++ p.pu[LUMA_ ## W ## x ## H].luma_vsp = interp_vert_sp_neon<8, W, H>; \ ++ p.pu[LUMA_ ## W ## x ## H].luma_vss = interp_vert_ss_neon<8, W, H>; \ ++ p.pu[LUMA_ ## W ## x ## H].luma_hvpp = interp_hv_pp_neon<8, W, H>; \ ++ p.pu[LUMA_ ## W ## x ## H].convert_p2s[NONALIGNED] = filterPixelToShort_neon;\ ++ p.pu[LUMA_ ## W ## x ## H].convert_p2s[ALIGNED] = filterPixelToShort_neon; ++ ++ ++void setupFilterPrimitives_neon(EncoderPrimitives &p) ++{ ++ ++ // All neon functions assume width of multiple of 8, (2,4,12 variants are not optimized) ++ ++ LUMA(8, 8); ++ LUMA(8, 4); ++ LUMA(16, 16); ++ CHROMA_420(8, 8); ++ LUMA(16, 8); ++ CHROMA_420(8, 4); ++ LUMA(8, 16); ++ LUMA(16, 12); ++ CHROMA_420(8, 6); ++ LUMA(16, 4); ++ CHROMA_420(8, 2); ++ LUMA(32, 32); ++ CHROMA_420(16, 16); ++ LUMA(32, 16); ++ CHROMA_420(16, 8); ++ LUMA(16, 32); ++ CHROMA_420(8, 16); ++ LUMA(32, 24); ++ CHROMA_420(16, 12); ++ LUMA(24, 32); ++ LUMA(32, 8); ++ CHROMA_420(16, 4); ++ LUMA(8, 32); ++ LUMA(64, 64); ++ CHROMA_420(32, 32); ++ LUMA(64, 32); ++ CHROMA_420(32, 16); ++ LUMA(32, 64); ++ CHROMA_420(16, 32); ++ LUMA(64, 48); ++ CHROMA_420(32, 24); ++ LUMA(48, 64); ++ CHROMA_420(24, 32); ++ LUMA(64, 16); ++ CHROMA_420(32, 8); ++ LUMA(16, 64); ++ CHROMA_420(8, 32); ++ CHROMA_422(8, 16); ++ CHROMA_422(8, 8); ++ CHROMA_422(8, 12); ++ CHROMA_422(8, 4); ++ CHROMA_422(16, 32); ++ CHROMA_422(16, 16); ++ CHROMA_422(8, 32); ++ CHROMA_422(16, 24); ++ CHROMA_422(16, 8); ++ CHROMA_422(32, 64); ++ CHROMA_422(32, 32); ++ CHROMA_422(16, 64); ++ CHROMA_422(32, 48); ++ CHROMA_422(24, 64); ++ CHROMA_422(32, 16); ++ CHROMA_422(8, 64); ++ CHROMA_444(8, 8); ++ CHROMA_444(8, 4); ++ CHROMA_444(16, 16); ++ CHROMA_444(16, 8); ++ CHROMA_444(8, 16); ++ CHROMA_444(16, 12); ++ CHROMA_444(16, 4); ++ CHROMA_444(32, 32); ++ CHROMA_444(32, 16); ++ CHROMA_444(16, 32); ++ CHROMA_444(32, 24); ++ CHROMA_444(24, 32); ++ CHROMA_444(32, 8); ++ CHROMA_444(8, 32); ++ CHROMA_444(64, 64); ++ CHROMA_444(64, 32); ++ CHROMA_444(32, 64); ++ CHROMA_444(64, 48); ++ CHROMA_444(48, 64); ++ CHROMA_444(64, 16); ++ CHROMA_444(16, 64); ++ ++} ++ ++}; ++ ++ ++#endif ++ ++ +diff -Naur ./source/common/arm64/filter-prim.h ../x265_apple_patch/source/common/arm64/filter-prim.h +--- ./source/common/arm64/filter-prim.h 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/filter-prim.h 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,20 @@ ++#ifndef _FILTER_PRIM_ARM64_H__ ++#define _FILTER_PRIM_ARM64_H__ ++ ++ ++#include "common.h" ++#include "slicetype.h" // LOWRES_COST_MASK ++#include "primitives.h" ++#include "x265.h" ++ ++ ++namespace X265_NS { ++ ++ ++void setupFilterPrimitives_neon(EncoderPrimitives &p); ++ ++}; ++ ++ ++#endif ++ +diff -Naur ./source/common/arm64/intrapred-prim.cpp ../x265_apple_patch/source/common/arm64/intrapred-prim.cpp +--- ./source/common/arm64/intrapred-prim.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/intrapred-prim.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,266 @@ ++/***************************************************************************** ++ * Copyright (C) 2013-2017 MulticoreWare, Inc ++ * ++ * Authors: Min Chen ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. ++ * ++ * This program is also available under a commercial proprietary license. ++ * For more information, contact us at license @ x265.com. ++ *****************************************************************************/ ++ ++ ++#include "common.h" ++#include "primitives.h" ++ ++ ++#if 1 ++#include "arm64-utils.h" ++#include ++ ++using namespace X265_NS; ++ ++namespace { ++ ++ ++ ++template ++void intra_pred_ang_neon(pixel* dst, intptr_t dstStride, const pixel *srcPix0, int dirMode, int bFilter) ++{ ++ int width2 = width << 1; ++ // Flip the neighbours in the horizontal case. ++ int horMode = dirMode < 18; ++ pixel neighbourBuf[129]; ++ const pixel *srcPix = srcPix0; ++ ++ if (horMode) ++ { ++ neighbourBuf[0] = srcPix[0]; ++ //for (int i = 0; i < width << 1; i++) ++ //{ ++ // neighbourBuf[1 + i] = srcPix[width2 + 1 + i]; ++ // neighbourBuf[width2 + 1 + i] = srcPix[1 + i]; ++ //} ++ memcpy(&neighbourBuf[1],&srcPix[width2+1],sizeof(pixel)*(width << 1)); ++ memcpy(&neighbourBuf[width2 + 1],&srcPix[1],sizeof(pixel)*(width << 1)); ++ srcPix = neighbourBuf; ++ } ++ ++ // Intra prediction angle and inverse angle tables. ++ const int8_t angleTable[17] = { -32, -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32 }; ++ const int16_t invAngleTable[8] = { 4096, 1638, 910, 630, 482, 390, 315, 256 }; ++ ++ // Get the prediction angle. ++ int angleOffset = horMode ? 10 - dirMode : dirMode - 26; ++ int angle = angleTable[8 + angleOffset]; ++ ++ // Vertical Prediction. ++ if (!angle) ++ { ++ for (int y = 0; y < width; y++) { ++ memcpy(&dst[y * dstStride],srcPix + 1,sizeof(pixel)*width); ++ } ++ if (bFilter) ++ { ++ int topLeft = srcPix[0], top = srcPix[1]; ++ for (int y = 0; y < width; y++) ++ dst[y * dstStride] = x265_clip((int16_t)(top + ((srcPix[width2 + 1 + y] - topLeft) >> 1))); ++ } ++ } ++ else // Angular prediction. ++ { ++ // Get the reference pixels. The reference base is the first pixel to the top (neighbourBuf[1]). ++ pixel refBuf[64]; ++ const pixel *ref; ++ ++ // Use the projected left neighbours and the top neighbours. ++ if (angle < 0) ++ { ++ // Number of neighbours projected. ++ int nbProjected = -((width * angle) >> 5) - 1; ++ pixel *ref_pix = refBuf + nbProjected + 1; ++ ++ // Project the neighbours. ++ int invAngle = invAngleTable[- angleOffset - 1]; ++ int invAngleSum = 128; ++ for (int i = 0; i < nbProjected; i++) ++ { ++ invAngleSum += invAngle; ++ ref_pix[- 2 - i] = srcPix[width2 + (invAngleSum >> 8)]; ++ } ++ ++ // Copy the top-left and top pixels. ++ //for (int i = 0; i < width + 1; i++) ++ //ref_pix[-1 + i] = srcPix[i]; ++ ++ memcpy(&ref_pix[-1],srcPix,(width+1)*sizeof(pixel)); ++ ref = ref_pix; ++ } ++ else // Use the top and top-right neighbours. ++ ref = srcPix + 1; ++ ++ // Pass every row. ++ int angleSum = 0; ++ for (int y = 0; y < width; y++) ++ { ++ angleSum += angle; ++ int offset = angleSum >> 5; ++ int fraction = angleSum & 31; ++ ++ if (fraction) // Interpolate ++ { ++ if (width >= 8 && sizeof(pixel) == 1) ++ { ++ const int16x8_t f0 = vdupq_n_s16(32-fraction); ++ const int16x8_t f1 = vdupq_n_s16(fraction); ++ for (int x = 0;x= 4 && sizeof(pixel) == 2) ++ { ++ const int32x4_t f0 = vdupq_n_s32(32-fraction); ++ const int32x4_t f1 = vdupq_n_s32(fraction); ++ for (int x = 0;x> 5); ++ } ++ } ++ else // Copy. ++ { ++ memcpy(&dst[y * dstStride],&ref[offset],sizeof(pixel)*width); ++ } ++ } ++ } ++ ++ // Flip for horizontal. ++ if (horMode) ++ { ++ if (width == 8) transpose8x8(dst,dst,dstStride,dstStride); ++ else if (width == 16) transpose16x16(dst,dst,dstStride,dstStride); ++ else if (width == 32) transpose32x32(dst,dst,dstStride,dstStride); ++ else { ++ for (int y = 0; y < width - 1; y++) ++ { ++ for (int x = y + 1; x < width; x++) ++ { ++ pixel tmp = dst[y * dstStride + x]; ++ dst[y * dstStride + x] = dst[x * dstStride + y]; ++ dst[x * dstStride + y] = tmp; ++ } ++ } ++ } ++ } ++} ++ ++template ++void all_angs_pred_neon(pixel *dest, pixel *refPix, pixel *filtPix, int bLuma) ++{ ++ const int size = 1 << log2Size; ++ for (int mode = 2; mode <= 34; mode++) ++ { ++ pixel *srcPix = (g_intraFilterFlags[mode] & size ? filtPix : refPix); ++ pixel *out = dest + ((mode - 2) << (log2Size * 2)); ++ ++ intra_pred_ang_neon(out, size, srcPix, mode, bLuma); ++ ++ // Optimize code don't flip buffer ++ bool modeHor = (mode < 18); ++ ++ // transpose the block if this is a horizontal mode ++ if (modeHor) ++ { ++ if (size == 8) transpose8x8(out,out,size,size); ++ else if (size == 16) transpose16x16(out,out,size,size); ++ else if (size == 32) transpose32x32(out,out,size,size); ++ else { ++ for (int k = 0; k < size - 1; k++) ++ { ++ for (int l = k + 1; l < size; l++) ++ { ++ pixel tmp = out[k * size + l]; ++ out[k * size + l] = out[l * size + k]; ++ out[l * size + k] = tmp; ++ } ++ } ++ } ++ } ++ } ++} ++} ++ ++namespace X265_NS { ++// x265 private namespace ++ ++void setupIntraPrimitives_neon(EncoderPrimitives& p) ++{ ++// p.cu[BLOCK_4x4].intra_filter = intraFilter<4>; ++// p.cu[BLOCK_8x8].intra_filter = intraFilter<8>; ++// p.cu[BLOCK_16x16].intra_filter = intraFilter<16>; ++// p.cu[BLOCK_32x32].intra_filter = intraFilter<32>; ++ ++// p.cu[BLOCK_4x4].intra_pred[PLANAR_IDX] = planar_pred_neon<2>; ++// p.cu[BLOCK_8x8].intra_pred[PLANAR_IDX] = planar_pred_neon<3>; ++// p.cu[BLOCK_16x16].intra_pred[PLANAR_IDX] = planar_pred_neon<4>; ++// p.cu[BLOCK_32x32].intra_pred[PLANAR_IDX] = planar_pred_neon<5>; ++// ++// p.cu[BLOCK_4x4].intra_pred[DC_IDX] = intra_pred_dc_neon<4>; ++// p.cu[BLOCK_8x8].intra_pred[DC_IDX] = intra_pred_dc_neon<8>; ++// p.cu[BLOCK_16x16].intra_pred[DC_IDX] = intra_pred_dc_neon<16>; ++// p.cu[BLOCK_32x32].intra_pred[DC_IDX] = intra_pred_dc_neon<32>; ++ ++ for (int i = 2; i < NUM_INTRA_MODE; i++) ++ { ++ p.cu[BLOCK_4x4].intra_pred[i] = intra_pred_ang_neon<4>; ++ p.cu[BLOCK_8x8].intra_pred[i] = intra_pred_ang_neon<8>; ++ p.cu[BLOCK_16x16].intra_pred[i] = intra_pred_ang_neon<16>; ++ p.cu[BLOCK_32x32].intra_pred[i] = intra_pred_ang_neon<32>; ++ } ++ ++ p.cu[BLOCK_4x4].intra_pred_allangs = all_angs_pred_neon<2>; ++ p.cu[BLOCK_8x8].intra_pred_allangs = all_angs_pred_neon<3>; ++ p.cu[BLOCK_16x16].intra_pred_allangs = all_angs_pred_neon<4>; ++ p.cu[BLOCK_32x32].intra_pred_allangs = all_angs_pred_neon<5>; ++} ++} ++ ++ ++ ++#else ++ ++namespace X265_NS { ++// x265 private namespace ++void setupIntraPrimitives_neon(EncoderPrimitives& p) ++{} ++} ++ ++#endif ++ ++ ++ +diff -Naur ./source/common/arm64/intrapred-prim.h ../x265_apple_patch/source/common/arm64/intrapred-prim.h +--- ./source/common/arm64/intrapred-prim.h 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/intrapred-prim.h 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,14 @@ ++#ifndef INTRAPRED_PRIM_H__ ++ ++#if defined(__aarch64__) ++ ++namespace X265_NS { ++// x265 private namespace ++ ++void setupIntraPrimitives_neon(EncoderPrimitives& p); ++} ++ ++#endif ++ ++#endif ++ +diff -Naur ./source/common/arm64/loopfilter-prim.cpp ../x265_apple_patch/source/common/arm64/loopfilter-prim.cpp +--- ./source/common/arm64/loopfilter-prim.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/loopfilter-prim.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,305 @@ ++/***************************************************************************** ++* Copyright (C) 2013-2017 MulticoreWare, Inc ++* ++* Authors: Praveen Kumar Tiwari ++* Dnyaneshwar Gorade ++* Min Chen ++* ++* This program is free software; you can redistribute it and/or modify ++* it under the terms of the GNU General Public License as published by ++* the Free Software Foundation; either version 2 of the License, or ++* (at your option) any later version. ++* ++* This program is distributed in the hope that it will be useful, ++* but WITHOUT ANY WARRANTY; without even the implied warranty of ++* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++* GNU General Public License for more details. ++* ++* You should have received a copy of the GNU General Public License ++* along with this program; if not, write to the Free Software ++* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. ++* ++* This program is also available under a commercial proprietary license. ++* For more information, contact us at license @ x265.com. ++*****************************************************************************/ ++#include "loopfilter-prim.h" ++ ++#define PIXEL_MIN 0 ++ ++ ++ ++#if !(HIGH_BIT_DEPTH) && defined(HAVE_NEON) ++#include ++ ++namespace { ++ ++ ++/* get the sign of input variable (TODO: this is a dup, make common) */ ++static inline int8_t signOf(int x) ++{ ++ return (x >> 31) | ((int)((((uint32_t)-x)) >> 31)); ++} ++ ++static inline int8x8_t sign_diff_neon(const uint8x8_t in0, const uint8x8_t in1) ++{ ++ int16x8_t in = vsubl_u8(in0,in1); ++ return vmovn_s16(vmaxq_s16(vminq_s16(in,vdupq_n_s16(1)),vdupq_n_s16(-1))); ++} ++ ++static void calSign_neon(int8_t *dst, const pixel *src1, const pixel *src2, const int endX) ++{ ++ int x = 0; ++ for (; (x + 8) <= endX; x += 8) { ++ *(int8x8_t *)&dst[x] = sign_diff_neon(*(uint8x8_t *)&src1[x],*(uint8x8_t *)&src2[x]); ++ } ++ ++ for (; x < endX; x++) ++ dst[x] = signOf(src1[x] - src2[x]); ++} ++ ++static void processSaoCUE0_neon(pixel * rec, int8_t * offsetEo, int width, int8_t* signLeft, intptr_t stride) ++{ ++ ++ ++ int y; ++ int8_t signRight, signLeft0; ++ int8_t edgeType; ++ ++ for (y = 0; y < 2; y++) ++ { ++ signLeft0 = signLeft[y]; ++ int x = 0; ++ ++ if (width >= 8) { ++ int8x8_t vsignRight; ++ int8x8x2_t shifter; ++ shifter.val[1][0] = signLeft0; ++ static const int8x8_t index = {8,0,1,2,3,4,5,6}; ++ int8x8_t tbl = *(int8x8_t *)offsetEo; ++ for (; (x+8) <= width; x+=8) ++ { ++ uint8x8_t in = *(uint8x8_t *)&rec[x]; ++ vsignRight = sign_diff_neon(in,*(uint8x8_t *)&rec[x+1]); ++ shifter.val[0] = vneg_s8(vsignRight); ++ int8x8_t tmp = shifter.val[0]; ++ int8x8_t edge = vtbl2_s8(shifter,index); ++ int8x8_t vedgeType = vadd_s8(vadd_s8(vsignRight,edge),vdup_n_s8(2)); ++ shifter.val[1][0] = tmp[7]; ++ int16x8_t t1 = vmovl_s8(vtbl1_s8(tbl,vedgeType)); ++ t1 = vaddw_u8(t1,in); ++ t1 = vmaxq_s16(t1,vdupq_n_s16(0)); ++ t1 = vminq_s16(t1,vdupq_n_s16(255)); ++ *(uint8x8_t *)&rec[x] = vmovn_u16(t1); ++ } ++ signLeft0 = shifter.val[1][0]; ++ } ++ for (; x < width; x++) ++ { ++ signRight = ((rec[x] - rec[x + 1]) < 0) ? -1 : ((rec[x] - rec[x + 1]) > 0) ? 1 : 0; ++ edgeType = signRight + signLeft0 + 2; ++ signLeft0 = -signRight; ++ rec[x] = x265_clip(rec[x] + offsetEo[edgeType]); ++ } ++ rec += stride; ++ } ++} ++ ++static void processSaoCUE1_neon(pixel* rec, int8_t* upBuff1, int8_t* offsetEo, intptr_t stride, int width) ++{ ++ int x = 0; ++ int8_t signDown; ++ int edgeType; ++ ++ if (width >= 8) { ++ int8x8_t tbl = *(int8x8_t *)offsetEo; ++ for (; (x+8) <= width; x+=8) ++ { ++ uint8x8_t in0 = *(uint8x8_t *)&rec[x]; ++ uint8x8_t in1 = *(uint8x8_t *)&rec[x+stride]; ++ int8x8_t vsignDown = sign_diff_neon(in0,in1); ++ int8x8_t vedgeType = vadd_s8(vadd_s8(vsignDown,*(int8x8_t *)&upBuff1[x]),vdup_n_s8(2)); ++ *(int8x8_t *)&upBuff1[x] = vneg_s8(vsignDown); ++ int16x8_t t1 = vmovl_s8(vtbl1_s8(tbl,vedgeType)); ++ t1 = vaddw_u8(t1,in0); ++ *(uint8x8_t *)&rec[x] = vqmovun_s16(t1); ++ } ++ } ++ for (; x < width; x++) ++ { ++ signDown = signOf(rec[x] - rec[x + stride]); ++ edgeType = signDown + upBuff1[x] + 2; ++ upBuff1[x] = -signDown; ++ rec[x] = x265_clip(rec[x] + offsetEo[edgeType]); ++ } ++} ++ ++static void processSaoCUE1_2Rows_neon(pixel* rec, int8_t* upBuff1, int8_t* offsetEo, intptr_t stride, int width) ++{ ++ int y; ++ int8_t signDown; ++ int edgeType; ++ ++ for (y = 0; y < 2; y++) ++ { ++ int x=0; ++ if (width >= 8) { ++ int8x8_t tbl = *(int8x8_t *)offsetEo; ++ for (; (x+8) <= width; x+=8) ++ { ++ uint8x8_t in0 = *(uint8x8_t *)&rec[x]; ++ uint8x8_t in1 = *(uint8x8_t *)&rec[x+stride]; ++ int8x8_t vsignDown = sign_diff_neon(in0,in1); ++ int8x8_t vedgeType = vadd_s8(vadd_s8(vsignDown,*(int8x8_t *)&upBuff1[x]),vdup_n_s8(2)); ++ *(int8x8_t *)&upBuff1[x] = vneg_s8(vsignDown); ++ int16x8_t t1 = vmovl_s8(vtbl1_s8(tbl,vedgeType)); ++ t1 = vaddw_u8(t1,in0); ++ t1 = vmaxq_s16(t1,vdupq_n_s16(0)); ++ t1 = vminq_s16(t1,vdupq_n_s16(255)); ++ *(uint8x8_t *)&rec[x] = vmovn_u16(t1); ++ ++ } ++ } ++ for (; x < width; x++) ++ { ++ signDown = signOf(rec[x] - rec[x + stride]); ++ edgeType = signDown + upBuff1[x] + 2; ++ upBuff1[x] = -signDown; ++ rec[x] = x265_clip(rec[x] + offsetEo[edgeType]); ++ } ++ rec += stride; ++ } ++} ++ ++static void processSaoCUE2_neon(pixel * rec, int8_t * bufft, int8_t * buff1, int8_t * offsetEo, int width, intptr_t stride) ++{ ++ int x; ++ ++ if (abs(buff1-bufft) < 16) ++ { ++ for (x = 0; x < width; x++) ++ { ++ int8_t signDown = signOf(rec[x] - rec[x + stride + 1]); ++ int edgeType = signDown + buff1[x] + 2; ++ bufft[x + 1] = -signDown; ++ rec[x] = x265_clip(rec[x] + offsetEo[edgeType]);; ++ } ++ } ++ else ++ { ++ int8x8_t tbl = *(int8x8_t *)offsetEo; ++ x=0; ++ for (; (x + 8) <= width; x+=8) ++ { ++ uint8x8_t in0 = *(uint8x8_t *)&rec[x]; ++ uint8x8_t in1 = *(uint8x8_t *)&rec[x+stride+1]; ++ int8x8_t vsignDown = sign_diff_neon(in0,in1); ++ int8x8_t vedgeType = vadd_s8(vadd_s8(vsignDown,*(int8x8_t *)&buff1[x]),vdup_n_s8(2)); ++ *(int8x8_t *)&bufft[x+1] = vneg_s8(vsignDown); ++ int16x8_t t1 = vmovl_s8(vtbl1_s8(tbl,vedgeType)); ++ t1 = vaddw_u8(t1,in0); ++ t1 = vmaxq_s16(t1,vdupq_n_s16(0)); ++ t1 = vminq_s16(t1,vdupq_n_s16(255)); ++ *(uint8x8_t *)&rec[x] = vmovn_u16(t1); ++ } ++ for (; x < width; x++) ++ { ++ int8_t signDown = signOf(rec[x] - rec[x + stride + 1]); ++ int edgeType = signDown + buff1[x] + 2; ++ bufft[x + 1] = -signDown; ++ rec[x] = x265_clip(rec[x] + offsetEo[edgeType]);; ++ } ++ ++ } ++} ++ ++ ++static void processSaoCUE3_neon(pixel *rec, int8_t *upBuff1, int8_t *offsetEo, intptr_t stride, int startX, int endX) ++{ ++ int8_t signDown; ++ int8_t edgeType; ++ int8x8_t tbl = *(int8x8_t *)offsetEo; ++ ++ int x = startX + 1; ++ for (; (x+8) <= endX; x+=8 ) ++ { ++ uint8x8_t in0 = *(uint8x8_t *)&rec[x]; ++ uint8x8_t in1 = *(uint8x8_t *)&rec[x+stride]; ++ int8x8_t vsignDown = sign_diff_neon(in0,in1); ++ int8x8_t vedgeType = vadd_s8(vadd_s8(vsignDown,*(int8x8_t *)&upBuff1[x]),vdup_n_s8(2)); ++ *(int8x8_t *)&upBuff1[x-1] = vneg_s8(vsignDown); ++ int16x8_t t1 = vmovl_s8(vtbl1_s8(tbl,vedgeType)); ++ t1 = vaddw_u8(t1,in0); ++ t1 = vmaxq_s16(t1,vdupq_n_s16(0)); ++ t1 = vminq_s16(t1,vdupq_n_s16(255)); ++ *(uint8x8_t *)&rec[x] = vmovn_u16(t1); ++ ++ } ++ for (; x < endX; x++) ++ { ++ signDown = signOf(rec[x] - rec[x + stride]); ++ edgeType = signDown + upBuff1[x] + 2; ++ upBuff1[x - 1] = -signDown; ++ rec[x] = x265_clip(rec[x] + offsetEo[edgeType]); ++ } ++} ++ ++static void processSaoCUB0_neon(pixel* rec, const int8_t* offset, int ctuWidth, int ctuHeight, intptr_t stride) ++{ ++ #define SAO_BO_BITS 5 ++ const int boShift = X265_DEPTH - SAO_BO_BITS; ++ int x, y; ++ int8x8x4_t table; ++ table = *(int8x8x4_t *)offset; ++ ++ for (y = 0; y < ctuHeight; y++) ++ { ++ ++ for (x = 0; (x+8) <= ctuWidth; x+=8) ++ { ++ int8x8_t in = *(int8x8_t*)&rec[x]; ++ int8x8_t offsets = vtbl4_s8(table,vshr_n_u8(in,boShift)); ++ int16x8_t tmp = vmovl_s8(offsets); ++ tmp = vaddw_u8(tmp,in); ++ tmp = vmaxq_s16(tmp,vdupq_n_s16(0)); ++ tmp = vminq_s16(tmp,vdupq_n_s16(255)); ++ *(uint8x8_t *)&rec[x] = vmovn_u16(tmp); ++ } ++ for (; x < ctuWidth; x++) ++ { ++ rec[x] = x265_clip(rec[x] + offset[rec[x] >> boShift]); ++ } ++ rec += stride; ++ } ++} ++ ++} ++ ++ ++ ++namespace X265_NS { ++void setupLoopFilterPrimitives_neon(EncoderPrimitives &p) ++{ ++ p.saoCuOrgE0 = processSaoCUE0_neon; ++ p.saoCuOrgE1 = processSaoCUE1_neon; ++ p.saoCuOrgE1_2Rows = processSaoCUE1_2Rows_neon; ++ p.saoCuOrgE2[0] = processSaoCUE2_neon; ++ p.saoCuOrgE2[1] = processSaoCUE2_neon; ++ p.saoCuOrgE3[0] = processSaoCUE3_neon; ++ p.saoCuOrgE3[1] = processSaoCUE3_neon; ++ p.saoCuOrgB0 = processSaoCUB0_neon; ++ p.sign = calSign_neon; ++ ++} ++ ++#else //HIGH_BIT_DEPTH ++ ++ ++namespace X265_NS { ++void setupLoopFilterPrimitives_neon(EncoderPrimitives &) ++{ ++} ++ ++#endif ++ ++ ++} +diff -Naur ./source/common/arm64/loopfilter-prim.h ../x265_apple_patch/source/common/arm64/loopfilter-prim.h +--- ./source/common/arm64/loopfilter-prim.h 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/loopfilter-prim.h 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,43 @@ ++#ifndef _LOOPFILTER_NEON_H__ ++#define _LOOPFILTER_NEON_H__ ++ ++ ++/***************************************************************************** ++* Copyright (C) 2013-2017 MulticoreWare, Inc ++* ++* Authors: Praveen Kumar Tiwari ++* Dnyaneshwar Gorade ++* Min Chen ++* ++* This program is free software; you can redistribute it and/or modify ++* it under the terms of the GNU General Public License as published by ++* the Free Software Foundation; either version 2 of the License, or ++* (at your option) any later version. ++* ++* This program is distributed in the hope that it will be useful, ++* but WITHOUT ANY WARRANTY; without even the implied warranty of ++* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++* GNU General Public License for more details. ++* ++* You should have received a copy of the GNU General Public License ++* along with this program; if not, write to the Free Software ++* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. ++* ++* This program is also available under a commercial proprietary license. ++* For more information, contact us at license @ x265.com. ++*****************************************************************************/ ++ ++ ++ ++#include "common.h" ++#include "primitives.h" ++ ++#define PIXEL_MIN 0 ++ ++namespace X265_NS { ++void setupLoopFilterPrimitives_neon(EncoderPrimitives &p); ++ ++}; ++ ++ ++#endif +diff -Naur ./source/common/arm64/pixel-prim.cpp ../x265_apple_patch/source/common/arm64/pixel-prim.cpp +--- ./source/common/arm64/pixel-prim.cpp 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/pixel-prim.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,1940 @@ ++#include "common.h" ++#include "slicetype.h" // LOWRES_COST_MASK ++#include "primitives.h" ++#include "x265.h" ++ ++#include "pixel-prim.h" ++#include "arm64-utils.h" ++#if HAVE_NEON ++ ++#include ++ ++using namespace X265_NS; ++ ++ ++ ++namespace { ++ ++ ++/* SATD SA8D variants - based on x264 */ ++static inline void SUMSUB_AB(int16x8_t& sum, int16x8_t& sub, const int16x8_t a, const int16x8_t b) ++{ ++ sum = vaddq_s16(a,b); ++ sub = vsubq_s16(a,b); ++} ++ ++static inline void transpose_8h(int16x8_t& t1, int16x8_t& t2, const int16x8_t s1, const int16x8_t s2) ++{ ++ t1 = vtrn1q_s16(s1, s2); ++ t2 = vtrn2q_s16(s1, s2); ++} ++ ++static inline void transpose_4s(int16x8_t& t1, int16x8_t& t2, const int16x8_t s1, const int16x8_t s2) ++{ ++ t1 = vtrn1q_s32(s1, s2); ++ t2 = vtrn2q_s32(s1, s2); ++} ++ ++#if (X265_DEPTH <= 10) ++static inline void transpose_2d(int16x8_t& t1, int16x8_t& t2, const int16x8_t s1, const int16x8_t s2) ++{ ++ t1 = vtrn1q_s64(s1, s2); ++ t2 = vtrn2q_s64(s1, s2); ++} ++#endif ++ ++ ++static inline void SUMSUB_ABCD(int16x8_t& s1, int16x8_t& d1, int16x8_t& s2, int16x8_t& d2, ++ int16x8_t a,int16x8_t b,int16x8_t c,int16x8_t d) ++{ ++ SUMSUB_AB(s1,d1,a,b); ++ SUMSUB_AB(s2,d2,c,d); ++} ++ ++static inline void HADAMARD4_V(int16x8_t& r1,int16x8_t& r2,int16x8_t& r3,int16x8_t& r4, ++ int16x8_t& t1,int16x8_t& t2,int16x8_t& t3,int16x8_t& t4) ++{ ++ SUMSUB_ABCD(t1, t2, t3, t4, r1, r2, r3, r4); ++ SUMSUB_ABCD(r1, r3, r2, r4, t1, t3, t2, t4); ++} ++ ++ ++static int _satd_4x8_8x4_end_neon(int16x8_t v0,int16x8_t v1,int16x8_t v2, int16x8_t v3) ++ ++{ ++ ++ int16x8_t v4,v5,v6,v7,v16,v17,v18,v19; ++ ++ ++ SUMSUB_AB (v16, v17, v0, v1); ++ SUMSUB_AB (v18, v19, v2, v3); ++ ++ SUMSUB_AB (v4 , v6 , v16, v18); ++ SUMSUB_AB (v5 , v7 , v17, v19); ++ ++ v0 = vtrn1q_s16(v4, v5); ++ v1 = vtrn2q_s16(v4, v5); ++ v2 = vtrn1q_s16(v6, v7); ++ v3 = vtrn2q_s16(v6, v7); ++ ++ SUMSUB_AB (v16, v17, v0, v1); ++ SUMSUB_AB (v18, v19, v2, v3); ++ ++ v0 = vtrn1q_s32(v16, v18); ++ v1 = vtrn2q_s32(v16, v18); ++ v2 = vtrn1q_s32(v17, v19); ++ v3 = vtrn2q_s32(v17, v19); ++ ++ v0 = vabsq_s16(v0); ++ v1 = vabsq_s16(v1); ++ v2 = vabsq_s16(v2); ++ v3 = vabsq_s16(v3); ++ ++ v0 = vmaxq_u16(v0, v1); ++ v1 = vmaxq_u16(v2, v3); ++ ++ v0 = vaddq_u16(v0, v1); ++ return vaddlvq_u16(v0); ++} ++ ++static inline int _satd_4x4_neon(int16x8_t v0, int16x8_t v1) ++{ ++ int16x8_t v2,v3; ++ SUMSUB_AB (v2, v3, v0, v1); ++ ++ v0 = vzip1q_s64(v2,v3); ++ v1 = vzip2q_s64(v2,v3); ++ SUMSUB_AB (v2, v3, v0, v1); ++ ++ v0 = vtrn1q_s16(v2,v3); ++ v1 = vtrn2q_s16(v2,v3); ++ SUMSUB_AB (v2, v3, v0, v1); ++ ++ v0 = vtrn1q_s32(v2,v3); ++ v1 = vtrn2q_s32(v2,v3); ++ ++ v0 = vabsq_s16(v0); ++ v1 = vabsq_s16(v1); ++ v0 = vmaxq_u16(v0, v1); ++ ++ return vaddlvq_s16(v0); ++} ++ ++static void _satd_8x4v_8x8h_neon(int16x8_t& v0,int16x8_t& v1, int16x8_t&v2,int16x8_t& v3,int16x8_t& v20,int16x8_t& v21, int16x8_t&v22,int16x8_t& v23) ++{ ++ int16x8_t v16,v17,v18,v19,v4,v5,v6,v7; ++ ++ SUMSUB_AB(v16, v18, v0, v2); ++ SUMSUB_AB(v17, v19, v1, v3); ++ ++ HADAMARD4_V (v20, v21, v22, v23, v0, v1, v2, v3); ++ ++ transpose_8h( v0, v1, v16, v17); ++ transpose_8h( v2, v3, v18, v19); ++ transpose_8h( v4, v5, v20, v21); ++ transpose_8h( v6, v7, v22, v23); ++ ++ SUMSUB_AB (v16, v17, v0, v1); ++ SUMSUB_AB (v18, v19, v2, v3); ++ SUMSUB_AB (v20, v21, v4, v5); ++ SUMSUB_AB (v22, v23, v6, v7); ++ ++ transpose_4s( v0, v2, v16, v18); ++ transpose_4s( v1, v3, v17, v19); ++ transpose_4s( v4, v6, v20, v22); ++ transpose_4s( v5, v7, v21, v23); ++ ++ v0 = vabsq_s16(v0); ++ v1 = vabsq_s16(v1); ++ v2 = vabsq_s16(v2); ++ v3 = vabsq_s16(v3); ++ v4 = vabsq_s16(v4); ++ v5 = vabsq_s16(v5); ++ v6 = vabsq_s16(v6); ++ v7 = vabsq_s16(v7); ++ ++ v0 = vmaxq_u16(v0,v2); ++ v1 = vmaxq_u16(v1,v3); ++ v2 = vmaxq_u16(v4,v6); ++ v3 = vmaxq_u16(v5,v7); ++ ++} ++ ++#if HIGH_BIT_DEPTH ++ ++#if (X265_DEPTH > 10) ++static inline void transpose_2d(int32x4_t& t1, int32x4_t& t2, const int32x4_t s1, const int32x4_t s2) ++{ ++ t1 = vtrn1q_s64(s1, s2); ++ t2 = vtrn2q_s64(s1, s2); ++} ++ ++static inline void ISUMSUB_AB(int32x4_t& sum, int32x4_t& sub, const int32x4_t a, const int32x4_t b) ++{ ++ sum = vaddq_s32(a,b); ++ sub = vsubq_s32(a,b); ++} ++ ++static inline void ISUMSUB_AB_FROM_INT16(int32x4_t& suml, int32x4_t& sumh, int32x4_t& subl, int32x4_t& subh, const int16x8_t a, const int16x8_t b) ++{ ++ suml = vaddl_s16(vget_low_s16(a),vget_low_s16(b)); ++ sumh = vaddl_high_s16(a,b); ++ subl = vsubl_s16(vget_low_s16(a),vget_low_s16(b)); ++ subh = vsubl_high_s16(a, b); ++} ++ ++#endif ++ ++static inline void _sub_8x8_fly(const uint16_t* pix1, intptr_t stride_pix1, const uint16_t* pix2, intptr_t stride_pix2, ++ int16x8_t& v0,int16x8_t& v1, int16x8_t& v2,int16x8_t& v3, ++ int16x8_t& v20,int16x8_t& v21, int16x8_t& v22,int16x8_t& v23) ++{ ++ uint16x8_t r0,r1,r2,r3; ++ uint16x8_t t0,t1,t2,t3; ++ int16x8_t v16,v17; ++ int16x8_t v18,v19; ++ ++ r0 = *(uint16x8_t*)(pix1 + 0*stride_pix1); ++ r1 = *(uint16x8_t*)(pix1 + 1*stride_pix1); ++ r2 = *(uint16x8_t*)(pix1 + 2*stride_pix1); ++ r3 = *(uint16x8_t*)(pix1 + 3*stride_pix1); ++ ++ t0 = *(uint16x8_t*)(pix2 + 0*stride_pix2); ++ t1 = *(uint16x8_t*)(pix2 + 1*stride_pix2); ++ t2 = *(uint16x8_t*)(pix2 + 2*stride_pix2); ++ t3 = *(uint16x8_t*)(pix2 + 3*stride_pix2); ++ ++ v16 = vsubq_u16(r0,t0); ++ v17 = vsubq_u16(r1,t1); ++ v18 = vsubq_u16(r2,t2); ++ v19 = vsubq_u16(r3,t3); ++ ++ r0 = *(uint16x8_t*)(pix1 + 4*stride_pix1); ++ r1 = *(uint16x8_t*)(pix1 + 5*stride_pix1); ++ r2 = *(uint16x8_t*)(pix1 + 6*stride_pix1); ++ r3 = *(uint16x8_t*)(pix1 + 7*stride_pix1); ++ ++ t0 = *(uint16x8_t*)(pix2 + 4*stride_pix2); ++ t1 = *(uint16x8_t*)(pix2 + 5*stride_pix2); ++ t2 = *(uint16x8_t*)(pix2 + 6*stride_pix2); ++ t3 = *(uint16x8_t*)(pix2 + 7*stride_pix2); ++ ++ v20 = vsubq_u16(r0,t0); ++ v21 = vsubq_u16(r1,t1); ++ v22 = vsubq_u16(r2,t2); ++ v23 = vsubq_u16(r3,t3); ++ ++ SUMSUB_AB (v0, v1, v16, v17); ++ SUMSUB_AB (v2, v3, v18, v19); ++ ++} ++ ++ ++ ++ ++static void _satd_16x4_neon(const uint16_t* pix1, intptr_t stride_pix1, const uint16_t* pix2, intptr_t stride_pix2, ++ int16x8_t& v0,int16x8_t&v1, int16x8_t&v2,int16x8_t&v3) ++{ ++ uint8x16_t r0,r1,r2,r3; ++ uint8x16_t t0,t1,t2,t3; ++ int16x8_t v16,v17,v20,v21; ++ int16x8_t v18,v19,v22,v23; ++ ++ r0 = *(int16x8_t*)(pix1 + 0*stride_pix1); ++ r1 = *(int16x8_t*)(pix1 + 1*stride_pix1); ++ r2 = *(int16x8_t*)(pix1 + 2*stride_pix1); ++ r3 = *(int16x8_t*)(pix1 + 3*stride_pix1); ++ ++ t0 = *(int16x8_t*)(pix2 + 0*stride_pix2); ++ t1 = *(int16x8_t*)(pix2 + 1*stride_pix2); ++ t2 = *(int16x8_t*)(pix2 + 2*stride_pix2); ++ t3 = *(int16x8_t*)(pix2 + 3*stride_pix2); ++ ++ ++ v16 = vsubq_u16((r0),(t0) ); ++ v17 = vsubq_u16((r1),(t1) ); ++ v18 = vsubq_u16((r2),(t2) ); ++ v19 = vsubq_u16((r3),(t3) ); ++ ++ r0 = *(int16x8_t*)(pix1 + 0*stride_pix1 + 8); ++ r1 = *(int16x8_t*)(pix1 + 1*stride_pix1 + 8); ++ r2 = *(int16x8_t*)(pix1 + 2*stride_pix1 + 8); ++ r3 = *(int16x8_t*)(pix1 + 3*stride_pix1 + 8); ++ ++ t0 = *(int16x8_t*)(pix2 + 0*stride_pix2 + 8); ++ t1 = *(int16x8_t*)(pix2 + 1*stride_pix2 + 8); ++ t2 = *(int16x8_t*)(pix2 + 2*stride_pix2 + 8); ++ t3 = *(int16x8_t*)(pix2 + 3*stride_pix2 + 8); ++ ++ ++ v20 = vsubq_u16(r0,t0); ++ v21 = vsubq_u16(r1,t1); ++ v22 = vsubq_u16(r2,t2); ++ v23 = vsubq_u16(r3,t3); ++ ++ SUMSUB_AB (v0, v1, v16, v17); ++ SUMSUB_AB (v2, v3, v18, v19); ++ ++ _satd_8x4v_8x8h_neon(v0,v1,v2,v3,v20,v21,v22,v23); ++ ++} ++ ++ ++int pixel_satd_4x4_neon(const uint16_t* pix1, intptr_t stride_pix1, const uint16_t* pix2, intptr_t stride_pix2) ++{ ++ uint64x2_t t0,t1,r0,r1; ++ t0[0] = *(uint64_t *)(pix1 + 0*stride_pix1); ++ t1[0] = *(uint64_t *)(pix1 + 1*stride_pix1); ++ t0[1] = *(uint64_t *)(pix1 + 2*stride_pix1); ++ t1[1] = *(uint64_t *)(pix1 + 3*stride_pix1); ++ ++ r0[0] = *(uint64_t *)(pix2 + 0*stride_pix1); ++ r1[0] = *(uint64_t *)(pix2 + 1*stride_pix2); ++ r0[1] = *(uint64_t *)(pix2 + 2*stride_pix2); ++ r1[1] = *(uint64_t *)(pix2 + 3*stride_pix2); ++ ++ return _satd_4x4_neon(vsubq_u16(t0,r0), vsubq_u16(r1,t1)); ++} ++ ++ ++ ++ ++ ++ ++int pixel_satd_8x4_neon(const uint16_t* pix1, intptr_t stride_pix1, const uint16_t* pix2, intptr_t stride_pix2) ++{ ++ uint16x8_t i0,i1,i2,i3,i4,i5,i6,i7; ++ ++ i0 = *(uint16x8_t *)(pix1 + 0*stride_pix1); ++ i1 = *(uint16x8_t *)(pix2 + 0*stride_pix2); ++ i2 = *(uint16x8_t *)(pix1 + 1*stride_pix1); ++ i3 = *(uint16x8_t *)(pix2 + 1*stride_pix2); ++ i4 = *(uint16x8_t *)(pix1 + 2*stride_pix1); ++ i5 = *(uint16x8_t *)(pix2 + 2*stride_pix2); ++ i6 = *(uint16x8_t *)(pix1 + 3*stride_pix1); ++ i7 = *(uint16x8_t *)(pix2 + 3*stride_pix2); ++ ++ int16x8_t v0 = vsubq_u16(i0,i1); ++ int16x8_t v1 = vsubq_u16(i2,i3); ++ int16x8_t v2 = vsubq_u16(i4,i5); ++ int16x8_t v3 = vsubq_u16(i6,i7); ++ ++ return _satd_4x8_8x4_end_neon(v0,v1,v2,v3); ++} ++ ++ ++int pixel_satd_16x16_neon(const uint16_t* pix1, intptr_t stride_pix1, const uint16_t* pix2, intptr_t stride_pix2) ++{ ++ int32x4_t v30 = vdupq_n_u32(0),v31= vdupq_n_u32(0); ++ int16x8_t v0,v1,v2,v3; ++ ++ _satd_16x4_neon(pix1,stride_pix1,pix2,stride_pix2,v0,v1,v2,v3); ++ v30 = vpadalq_u16(v30,v0); ++ v30 = vpadalq_u16(v30,v1); ++ v31 = vpadalq_u16(v31,v2); ++ v31 = vpadalq_u16(v31,v3); ++ ++ _satd_16x4_neon(pix1 + 4*stride_pix1,stride_pix1,pix2+4*stride_pix2,stride_pix2,v0,v1,v2,v3); ++ v30 = vpadalq_u16(v30,v0); ++ v30 = vpadalq_u16(v30,v1); ++ v31 = vpadalq_u16(v31,v2); ++ v31 = vpadalq_u16(v31,v3); ++ ++ _satd_16x4_neon(pix1 + 8*stride_pix1,stride_pix1,pix2+8*stride_pix2,stride_pix2,v0,v1,v2,v3); ++ v30 = vpadalq_u16(v30,v0); ++ v30 = vpadalq_u16(v30,v1); ++ v31 = vpadalq_u16(v31,v2); ++ v31 = vpadalq_u16(v31,v3); ++ ++ _satd_16x4_neon(pix1 + 12*stride_pix1,stride_pix1,pix2+12*stride_pix2,stride_pix2,v0,v1,v2,v3); ++ v30 = vpadalq_u16(v30,v0); ++ v30 = vpadalq_u16(v30,v1); ++ v31 = vpadalq_u16(v31,v2); ++ v31 = vpadalq_u16(v31,v3); ++ ++ return vaddvq_s32(vaddq_s32(v30,v31)); ++ ++} ++ ++#else //HIGH_BIT_DEPTH ++ ++static void _satd_16x4_neon(const uint8_t* pix1, intptr_t stride_pix1, const uint8_t* pix2, intptr_t stride_pix2, ++ int16x8_t& v0,int16x8_t&v1, int16x8_t&v2,int16x8_t&v3) ++{ ++ uint8x16_t r0,r1,r2,r3; ++ uint8x16_t t0,t1,t2,t3; ++ int16x8_t v16,v17,v20,v21; ++ int16x8_t v18,v19,v22,v23; ++ ++ r0 = *(uint8x16_t*)(pix1 + 0*stride_pix1); ++ r1 = *(uint8x16_t*)(pix1 + 1*stride_pix1); ++ r2 = *(uint8x16_t*)(pix1 + 2*stride_pix1); ++ r3 = *(uint8x16_t*)(pix1 + 3*stride_pix1); ++ ++ t0 = *(uint8x16_t*)(pix2 + 0*stride_pix2); ++ t1 = *(uint8x16_t*)(pix2 + 1*stride_pix2); ++ t2 = *(uint8x16_t*)(pix2 + 2*stride_pix2); ++ t3 = *(uint8x16_t*)(pix2 + 3*stride_pix2); ++ ++ ++ ++ v16 = vsubl_u8(vget_low_u8(r0),vget_low_u8(t0) ); ++ v20 = vsubl_high_u8(r0,t0); ++ v17 = vsubl_u8(vget_low_u8(r1),vget_low_u8(t1) ); ++ v21 = vsubl_high_u8(r1,t1); ++ v18 = vsubl_u8(vget_low_u8(r2),vget_low_u8(t2) ); ++ v22 = vsubl_high_u8(r2,t2); ++ v19 = vsubl_u8(vget_low_u8(r3),vget_low_u8(t3) ); ++ v23 = vsubl_high_u8(r3,t3); ++ ++ SUMSUB_AB (v0, v1, v16, v17); ++ SUMSUB_AB (v2, v3, v18, v19); ++ ++ _satd_8x4v_8x8h_neon(v0,v1,v2,v3,v20,v21,v22,v23); ++ ++} ++ ++ ++static inline void _sub_8x8_fly(const uint8_t* pix1, intptr_t stride_pix1, const uint8_t* pix2, intptr_t stride_pix2, ++ int16x8_t& v0,int16x8_t& v1, int16x8_t& v2,int16x8_t& v3, ++ int16x8_t& v20,int16x8_t& v21, int16x8_t& v22,int16x8_t& v23) ++{ ++ uint8x8_t r0,r1,r2,r3; ++ uint8x8_t t0,t1,t2,t3; ++ int16x8_t v16,v17; ++ int16x8_t v18,v19; ++ ++ r0 = *(uint8x8_t*)(pix1 + 0*stride_pix1); ++ r1 = *(uint8x8_t*)(pix1 + 1*stride_pix1); ++ r2 = *(uint8x8_t*)(pix1 + 2*stride_pix1); ++ r3 = *(uint8x8_t*)(pix1 + 3*stride_pix1); ++ ++ t0 = *(uint8x8_t*)(pix2 + 0*stride_pix2); ++ t1 = *(uint8x8_t*)(pix2 + 1*stride_pix2); ++ t2 = *(uint8x8_t*)(pix2 + 2*stride_pix2); ++ t3 = *(uint8x8_t*)(pix2 + 3*stride_pix2); ++ ++ v16 = vsubl_u8(r0,t0); ++ v17 = vsubl_u8(r1,t1); ++ v18 = vsubl_u8(r2,t2); ++ v19 = vsubl_u8(r3,t3); ++ ++ r0 = *(uint8x8_t*)(pix1 + 4*stride_pix1); ++ r1 = *(uint8x8_t*)(pix1 + 5*stride_pix1); ++ r2 = *(uint8x8_t*)(pix1 + 6*stride_pix1); ++ r3 = *(uint8x8_t*)(pix1 + 7*stride_pix1); ++ ++ t0 = *(uint8x8_t*)(pix2 + 4*stride_pix2); ++ t1 = *(uint8x8_t*)(pix2 + 5*stride_pix2); ++ t2 = *(uint8x8_t*)(pix2 + 6*stride_pix2); ++ t3 = *(uint8x8_t*)(pix2 + 7*stride_pix2); ++ ++ v20 = vsubl_u8(r0,t0); ++ v21 = vsubl_u8(r1,t1); ++ v22 = vsubl_u8(r2,t2); ++ v23 = vsubl_u8(r3,t3); ++ ++ ++ SUMSUB_AB (v0, v1, v16, v17); ++ SUMSUB_AB (v2, v3, v18, v19); ++ ++} ++ ++int pixel_satd_4x4_neon(const uint8_t* pix1, intptr_t stride_pix1, const uint8_t* pix2, intptr_t stride_pix2) ++{ ++ uint32x2_t t0,t1,r0,r1; ++ t0[0] = *(uint32_t *)(pix1 + 0*stride_pix1); ++ t1[0] = *(uint32_t *)(pix1 + 1*stride_pix1); ++ t0[1] = *(uint32_t *)(pix1 + 2*stride_pix1); ++ t1[1] = *(uint32_t *)(pix1 + 3*stride_pix1); ++ ++ r0[0] = *(uint32_t *)(pix2 + 0*stride_pix1); ++ r1[0] = *(uint32_t *)(pix2 + 1*stride_pix2); ++ r0[1] = *(uint32_t *)(pix2 + 2*stride_pix2); ++ r1[1] = *(uint32_t *)(pix2 + 3*stride_pix2); ++ ++ return _satd_4x4_neon(vsubl_u8(t0,r0), vsubl_u8(r1,t1)); ++} ++ ++ ++int pixel_satd_8x4_neon(const uint8_t* pix1, intptr_t stride_pix1, const uint8_t* pix2, intptr_t stride_pix2) ++{ ++ uint8x8_t i0,i1,i2,i3,i4,i5,i6,i7; ++ ++ i0 = *(uint8x8_t *)(pix1 + 0*stride_pix1); ++ i1 = *(uint8x8_t *)(pix2 + 0*stride_pix2); ++ i2 = *(uint8x8_t *)(pix1 + 1*stride_pix1); ++ i3 = *(uint8x8_t *)(pix2 + 1*stride_pix2); ++ i4 = *(uint8x8_t *)(pix1 + 2*stride_pix1); ++ i5 = *(uint8x8_t *)(pix2 + 2*stride_pix2); ++ i6 = *(uint8x8_t *)(pix1 + 3*stride_pix1); ++ i7 = *(uint8x8_t *)(pix2 + 3*stride_pix2); ++ ++ int16x8_t v0 = vsubl_u8(i0,i1); ++ int16x8_t v1 = vsubl_u8(i2,i3); ++ int16x8_t v2 = vsubl_u8(i4,i5); ++ int16x8_t v3 = vsubl_u8(i6,i7); ++ ++ return _satd_4x8_8x4_end_neon(v0,v1,v2,v3); ++} ++ ++int pixel_satd_16x16_neon(const uint8_t* pix1, intptr_t stride_pix1, const uint8_t* pix2, intptr_t stride_pix2) ++{ ++ int16x8_t v30,v31; ++ int16x8_t v0,v1,v2,v3; ++ ++ _satd_16x4_neon(pix1,stride_pix1,pix2,stride_pix2,v0,v1,v2,v3); ++ v30 = vaddq_s16(v0,v1); ++ v31 = vaddq_s16(v2,v3); ++ ++ _satd_16x4_neon(pix1 + 4*stride_pix1,stride_pix1,pix2+4*stride_pix2,stride_pix2,v0,v1,v2,v3); ++ v0 = vaddq_s16(v0,v1); ++ v1 = vaddq_s16(v2,v3); ++ v30 = vaddq_s16(v30, v0); ++ v31 = vaddq_s16(v31, v1); ++ ++ _satd_16x4_neon(pix1 + 8*stride_pix1,stride_pix1,pix2+8*stride_pix2,stride_pix2,v0,v1,v2,v3); ++ v0 = vaddq_s16(v0,v1); ++ v1 = vaddq_s16(v2,v3); ++ v30 = vaddq_s16(v30, v0); ++ v31 = vaddq_s16(v31, v1); ++ ++ _satd_16x4_neon(pix1 + 12*stride_pix1,stride_pix1,pix2+12*stride_pix2,stride_pix2,v0,v1,v2,v3); ++ v0 = vaddq_s16(v0,v1); ++ v1 = vaddq_s16(v2,v3); ++ v30 = vaddq_s16(v30, v0); ++ v31 = vaddq_s16(v31, v1); ++ ++ int32x4_t sum0 = vpaddlq_u16(v30); ++ int32x4_t sum1 = vpaddlq_u16(v31); ++ sum0 = vaddq_s32(sum0,sum1); ++ return vaddvq_s32(sum0); ++ ++} ++#endif //HIGH_BIT_DEPTH ++ ++ ++static inline void _sa8d_8x8_neon_end(int16x8_t& v0,int16x8_t& v1,int16x8_t v2,int16x8_t v3, ++ int16x8_t v20,int16x8_t v21,int16x8_t v22,int16x8_t v23) ++{ ++ int16x8_t v16,v17,v18,v19; ++ int16x8_t v4,v5,v6,v7; ++ ++ SUMSUB_AB (v16, v18, v0, v2); ++ SUMSUB_AB (v17, v19, v1, v3); ++ ++ HADAMARD4_V (v20, v21, v22, v23, v0, v1, v2, v3); ++ ++ SUMSUB_AB (v0, v16, v16, v20); ++ SUMSUB_AB (v1, v17, v17, v21); ++ SUMSUB_AB (v2, v18, v18, v22); ++ SUMSUB_AB (v3, v19, v19, v23); ++ ++ transpose_8h (v20, v21, v16, v17); ++ transpose_8h (v4, v5, v0, v1); ++ transpose_8h (v22, v23, v18, v19); ++ transpose_8h (v6, v7, v2, v3); ++ ++#if (X265_DEPTH <= 10) ++ ++ int16x8_t v24,v25; ++ ++ SUMSUB_AB (v2, v3, v20, v21); ++ SUMSUB_AB (v24, v25, v4, v5); ++ SUMSUB_AB (v0, v1, v22, v23); ++ SUMSUB_AB (v4, v5, v6, v7); ++ ++ transpose_4s (v20, v22, v2, v0); ++ transpose_4s (v21, v23, v3, v1); ++ transpose_4s (v16, v18, v24, v4); ++ transpose_4s (v17, v19, v25, v5); ++ ++ SUMSUB_AB (v0, v2, v20, v22); ++ SUMSUB_AB (v1, v3, v21, v23); ++ SUMSUB_AB (v4, v6, v16, v18); ++ SUMSUB_AB (v5, v7, v17, v19); ++ ++ transpose_2d (v16, v20, v0, v4); ++ transpose_2d (v17, v21, v1, v5); ++ transpose_2d (v18, v22, v2, v6); ++ transpose_2d (v19, v23, v3, v7); ++ ++ ++ v16 = vabsq_s16(v16); ++ v17 = vabsq_s16(v17); ++ v18 = vabsq_s16(v18); ++ v19 = vabsq_s16(v19); ++ v20 = vabsq_s16(v20); ++ v21 = vabsq_s16(v21); ++ v22 = vabsq_s16(v22); ++ v23 = vabsq_s16(v23); ++ ++ v16 = vmaxq_u16(v16,v20); ++ v17 = vmaxq_u16(v17,v21); ++ v18 = vmaxq_u16(v18,v22); ++ v19 = vmaxq_u16(v19,v23); ++ ++#if HIGH_BIT_DEPTH ++ v0 = vpaddlq_u16(v16); ++ v1 = vpaddlq_u16(v17); ++ v0 = vpadalq_u16(v0,v18); ++ v1 = vpadalq_u16(v1,v19); ++ ++#else //HIGH_BIT_DEPTH ++ ++ v0 = vaddq_u16(v16,v17); ++ v1 = vaddq_u16(v18,v19); ++ ++#endif //HIGH_BIT_DEPTH ++ ++#else // HIGH_BIT_DEPTH 12 bit only, switching math to int32, each int16x8 is up-convreted to 2 int32x4 (low and high) ++ ++ int32x4_t v2l,v2h,v3l,v3h,v24l,v24h,v25l,v25h,v0l,v0h,v1l,v1h; ++ int32x4_t v22l,v22h,v23l,v23h; ++ int32x4_t v4l,v4h,v5l,v5h; ++ int32x4_t v6l,v6h,v7l,v7h; ++ int32x4_t v16l,v16h,v17l,v17h; ++ int32x4_t v18l,v18h,v19l,v19h; ++ int32x4_t v20l,v20h,v21l,v21h; ++ ++ ISUMSUB_AB_FROM_INT16(v2l, v2h, v3l, v3h, v20, v21); ++ ISUMSUB_AB_FROM_INT16(v24l, v24h, v25l, v25h, v4, v5); ++ ++ v22l = vmovl_s16(vget_low_s16(v22)); ++ v22h = vmovl_high_s16(v22); ++ v23l = vmovl_s16(vget_low_s16(v23)); ++ v23h = vmovl_high_s16(v23); ++ ++ ISUMSUB_AB(v0l, v1l, v22l, v23l); ++ ISUMSUB_AB(v0h, v1h, v22h, v23h); ++ ++ v6l = vmovl_s16(vget_low_s16(v6)); ++ v6h = vmovl_high_s16(v6); ++ v7l = vmovl_s16(vget_low_s16(v7)); ++ v7h = vmovl_high_s16(v7); ++ ++ ISUMSUB_AB (v4l, v5l, v6l, v7l); ++ ISUMSUB_AB (v4h, v5h, v6h, v7h); ++ ++ transpose_2d (v20l, v22l, v2l, v0l); ++ transpose_2d (v21l, v23l, v3l, v1l); ++ transpose_2d (v16l, v18l, v24l, v4l); ++ transpose_2d (v17l, v19l, v25l, v5l); ++ ++ transpose_2d (v20h, v22h, v2h, v0h); ++ transpose_2d (v21h, v23h, v3h, v1h); ++ transpose_2d (v16h, v18h, v24h, v4h); ++ transpose_2d (v17h, v19h, v25h, v5h); ++ ++ ISUMSUB_AB (v0l, v2l, v20l, v22l); ++ ISUMSUB_AB (v1l, v3l, v21l, v23l); ++ ISUMSUB_AB (v4l, v6l, v16l, v18l); ++ ISUMSUB_AB (v5l, v7l, v17l, v19l); ++ ++ ISUMSUB_AB (v0h, v2h, v20h, v22h); ++ ISUMSUB_AB (v1h, v3h, v21h, v23h); ++ ISUMSUB_AB (v4h, v6h, v16h, v18h); ++ ISUMSUB_AB (v5h, v7h, v17h, v19h); ++ ++ v16l = v0l; ++ v16h = v4l; ++ v20l = v0h; ++ v20h = v4h; ++ ++ v17l = v1l; ++ v17h = v5l; ++ v21l = v1h; ++ v21h = v5h; ++ ++ v18l = v2l; ++ v18h = v6l; ++ v22l = v2h; ++ v22h = v6h; ++ ++ v19l = v3l; ++ v19h = v7l; ++ v23l = v3h; ++ v23h = v7h; ++ ++ v16l = vabsq_s32(v16l); ++ v17l = vabsq_s32(v17l); ++ v18l = vabsq_s32(v18l); ++ v19l = vabsq_s32(v19l); ++ v20l = vabsq_s32(v20l); ++ v21l = vabsq_s32(v21l); ++ v22l = vabsq_s32(v22l); ++ v23l = vabsq_s32(v23l); ++ ++ v16h = vabsq_s32(v16h); ++ v17h = vabsq_s32(v17h); ++ v18h = vabsq_s32(v18h); ++ v19h = vabsq_s32(v19h); ++ v20h = vabsq_s32(v20h); ++ v21h = vabsq_s32(v21h); ++ v22h = vabsq_s32(v22h); ++ v23h = vabsq_s32(v23h); ++ ++ v16l = vmaxq_u32(v16l,v20l); ++ v17l = vmaxq_u32(v17l,v21l); ++ v18l = vmaxq_u32(v18l,v22l); ++ v19l = vmaxq_u32(v19l,v23l); ++ ++ v16h = vmaxq_u32(v16h,v20h); ++ v17h = vmaxq_u32(v17h,v21h); ++ v18h = vmaxq_u32(v18h,v22h); ++ v19h = vmaxq_u32(v19h,v23h); ++ ++ v16l = vaddq_u32(v16l,v16h); ++ v17l = vaddq_u32(v17l,v17h); ++ v18l = vaddq_u32(v18l,v18h); ++ v19l = vaddq_u32(v19l,v19h); ++ ++ v0 = vaddq_u32(v16l, v17l); ++ v1 = vaddq_u32(v18l,v19l); ++ ++ ++#endif ++ ++} ++ ++ ++ ++static inline void _satd_8x8_neon(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2, ++ int16x8_t& v0,int16x8_t&v1, int16x8_t&v2,int16x8_t&v3) ++{ ++ ++ int16x8_t v20,v21,v22,v23; ++ _sub_8x8_fly(pix1,stride_pix1,pix2,stride_pix2,v0,v1,v2,v3,v20,v21,v22,v23); ++ _satd_8x4v_8x8h_neon(v0,v1,v2,v3,v20,v21,v22,v23); ++ ++} ++ ++ ++ ++int pixel_satd_8x8_neon(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2) ++{ ++ int16x8_t v30,v31; ++ int16x8_t v0,v1,v2,v3; ++ ++ _satd_8x8_neon(pix1,stride_pix1,pix2,stride_pix2,v0,v1,v2,v3); ++#if !(HIGH_BIT_DEPTH) ++ v30 = vaddq_u16(v0,v1); ++ v31 = vaddq_u16(v2,v3); ++ ++ uint16x8_t sum = vaddq_u16(v30,v31); ++ return vaddvq_s32(vpaddlq_u16(sum)); ++#else ++ ++ v30 = vaddq_u16(v0,v1); ++ v31 = vaddq_u16(v2,v3); ++ ++ int32x4_t sum = vpaddlq_u16(v30); ++ sum = vpadalq_u16(sum, v31); ++ return vaddvq_s32(sum); ++#endif ++} ++ ++ ++int pixel_sa8d_8x8_neon(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2) ++{ ++ int16x8_t v0,v1,v2,v3; ++ int16x8_t v20,v21,v22,v23; ++ ++ _sub_8x8_fly(pix1, stride_pix1, pix2, stride_pix2, v0, v1, v2, v3, v20, v21, v22, v23); ++ _sa8d_8x8_neon_end(v0, v1, v2, v3, v20, v21, v22, v23); ++ ++#if HIGH_BIT_DEPTH ++//#if 1//HIGH_BIT_DEPTH ++ int32x4_t s = vaddq_u32(v0,v1); ++ return (vaddvq_u32(s) + 1) >> 1; ++#else ++ return (vaddlvq_s16(vaddq_u16(v0, v1)) + 1) >> 1; ++#endif ++} ++ ++ ++ ++ ++ ++int pixel_sa8d_16x16_neon(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2) ++{ ++ int16x8_t v0,v1,v2,v3; ++ int16x8_t v20,v21,v22,v23; ++ int32x4_t v30,v31; ++ ++ _sub_8x8_fly(pix1, stride_pix1, pix2, stride_pix2, v0, v1, v2, v3, v20, v21, v22, v23); ++ _sa8d_8x8_neon_end(v0, v1, v2, v3, v20, v21, v22, v23); ++ ++#if !(HIGH_BIT_DEPTH) ++ v30 = vpaddlq_u16(v0); ++ v31 = vpaddlq_u16(v1); ++#else ++ v30 = vaddq_s32(v0,v1); ++#endif ++ ++ _sub_8x8_fly(pix1 + 8, stride_pix1, pix2 + 8, stride_pix2, v0, v1, v2, v3, v20, v21, v22, v23); ++ _sa8d_8x8_neon_end(v0, v1, v2, v3, v20, v21, v22, v23); ++ ++#if !(HIGH_BIT_DEPTH) ++ v30 = vpadalq_u16(v30,v0); ++ v31 = vpadalq_u16(v31,v1); ++#else ++ v31 = vaddq_s32(v0,v1); ++#endif ++ ++ ++ _sub_8x8_fly(pix1 + 8*stride_pix1, stride_pix1, pix2 + 8*stride_pix2, stride_pix2, v0, v1, v2, v3, v20, v21, v22, v23); ++ _sa8d_8x8_neon_end(v0, v1, v2, v3, v20, v21, v22, v23); ++ ++#if !(HIGH_BIT_DEPTH) ++ v30 = vpadalq_u16(v30,v0); ++ v31 = vpadalq_u16(v31,v1); ++#else ++ v30 = vaddq_s32(v30,v0); ++ v31 = vaddq_s32(v31,v1); ++#endif ++ ++ _sub_8x8_fly(pix1 + 8*stride_pix1 + 8, stride_pix1, pix2 + 8*stride_pix2 + 8, stride_pix2, v0, v1, v2, v3, v20, v21, v22, v23); ++ _sa8d_8x8_neon_end(v0, v1, v2, v3, v20, v21, v22, v23); ++ ++#if !(HIGH_BIT_DEPTH) ++ v30 = vpadalq_u16(v30,v0); ++ v31 = vpadalq_u16(v31,v1); ++#else ++ v30 = vaddq_s32(v30,v0); ++ v31 = vaddq_s32(v31,v1); ++#endif ++ ++ v30 = vaddq_u32(v30,v31); ++ ++ return (vaddvq_u32(v30) + 1) >> 1; ++} ++ ++ ++ ++ ++ ++ ++ ++ ++template ++void blockfill_s_neon(int16_t* dst, intptr_t dstride, int16_t val) ++{ ++ for (int y = 0; y < size; y++) { ++ int x = 0; ++ int16x8_t v = vdupq_n_s16(val); ++ for (; (x + 8) <= size; x+=8) { ++ *(int16x8_t*)&dst[y * dstride + x] = v; ++ } ++ for (; x < size; x++) { ++ dst[y * dstride + x] = val; ++ } ++ } ++} ++ ++template ++int sad_pp_neon(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2) ++{ ++ int sum = 0; ++ ++ ++ for (int y = 0; y < ly; y++) ++ { ++#if HIGH_BIT_DEPTH ++ int x=0; ++ uint16x8_t vsum16_1 = vdupq_n_u16(0); ++ for (; (x + 8) <= lx; x+=8) { ++ uint16x8_t p1 = *(uint16x8_t*)&pix1[x]; ++ uint16x8_t p2 = *(uint16x8_t*)&pix2[x]; ++ vsum16_1 = vabaq_s16(vsum16_1,p1,p2); ++ ++ } ++ if (lx & 4) { ++ uint16x4_t p1 = *(uint16x4_t*)&pix1[x]; ++ uint16x4_t p2 = *(uint16x4_t*)&pix2[x]; ++ sum += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p2)); ++ x += 4; ++ } ++ if (lx >= 4) { ++ sum += vaddlvq_s16(vsum16_1); ++ } ++ ++#else ++ ++ int x=0; ++ uint16x8_t vsum16_1 = vdupq_n_u16(0); ++ uint16x8_t vsum16_2 = vdupq_n_u16(0); ++ ++ for (; (x + 16) <= lx; x+=16) { ++ uint8x16_t p1 = *(uint8x16_t*)&pix1[x]; ++ uint8x16_t p2 = *(uint8x16_t*)&pix2[x]; ++ vsum16_1 = vabal_u8(vsum16_1,vget_low_u8(p1),vget_low_u8(p2)); ++ vsum16_2 = vabal_high_u8(vsum16_2,p1,p2); ++ } ++ if (lx & 8) { ++ uint8x8_t p1 = *(uint8x8_t*)&pix1[x]; ++ uint8x8_t p2 = *(uint8x8_t*)&pix2[x]; ++ vsum16_1 = vabal_u8(vsum16_1,p1,p2); ++ x += 8; ++ } ++ if (lx & 4) { ++ uint32x2_t p1 = vdup_n_u32(0); ++ p1[0] = *(uint32_t*)&pix1[x]; ++ uint32x2_t p2 = vdup_n_u32(0); ++ p2[0] = *(uint32_t*)&pix2[x]; ++ vsum16_1 = vabal_u8(vsum16_1,p1,p2); ++ x += 4; ++ } ++ if (lx >= 16) { ++ vsum16_1 = vaddq_u16(vsum16_1,vsum16_2); ++ } ++ if (lx >= 4) { ++ sum += vaddvq_u16(vsum16_1); ++ } ++ ++#endif ++ if (lx & 3) for (; x < lx; x++) { ++ sum += abs(pix1[x] - pix2[x]); ++ } ++ ++ pix1 += stride_pix1; ++ pix2 += stride_pix2; ++ } ++ ++ return sum; ++} ++ ++template ++void sad_x3_neon(const pixel* pix1, const pixel* pix2, const pixel* pix3, const pixel* pix4, intptr_t frefstride, int32_t* res) ++{ ++ res[0] = 0; ++ res[1] = 0; ++ res[2] = 0; ++ for (int y = 0; y < ly; y++) ++ { ++ int x = 0; ++ uint16x8_t vsum16_0 = vdupq_n_u16(0); ++ uint16x8_t vsum16_1 = vdupq_n_u16(0); ++ uint16x8_t vsum16_2 = vdupq_n_u16(0); ++#if HIGH_BIT_DEPTH ++ for (; (x + 8) <= lx; x+=8) { ++ uint16x8_t p1 = *(uint16x8_t*)&pix1[x]; ++ uint16x8_t p2 = *(uint16x8_t*)&pix2[x]; ++ uint16x8_t p3 = *(uint16x8_t*)&pix3[x]; ++ uint16x8_t p4 = *(uint16x8_t*)&pix4[x]; ++ vsum16_0 = vabaq_s16(vsum16_0,p1,p2); ++ vsum16_1 = vabaq_s16(vsum16_1,p1,p3); ++ vsum16_2 = vabaq_s16(vsum16_2,p1,p4); ++ ++ } ++ if (lx & 4) { ++ uint16x4_t p1 = *(uint16x4_t*)&pix1[x]; ++ uint16x4_t p2 = *(uint16x4_t*)&pix2[x]; ++ uint16x4_t p3 = *(uint16x4_t*)&pix3[x]; ++ uint16x4_t p4 = *(uint16x4_t*)&pix4[x]; ++ res[0] += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p2)); ++ res[1] += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p3)); ++ res[2] += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p4)); ++ x += 4; ++ } ++ if (lx >= 4) { ++ res[0] += vaddlvq_s16(vsum16_0); ++ res[1] += vaddlvq_s16(vsum16_1); ++ res[2] += vaddlvq_s16(vsum16_2); ++ } ++#else ++ ++ for (; (x + 16) <= lx; x+=16) { ++ uint8x16_t p1 = *(uint8x16_t*)&pix1[x]; ++ uint8x16_t p2 = *(uint8x16_t*)&pix2[x]; ++ uint8x16_t p3 = *(uint8x16_t*)&pix3[x]; ++ uint8x16_t p4 = *(uint8x16_t*)&pix4[x]; ++ vsum16_0 = vabal_u8(vsum16_0,vget_low_u8(p1),vget_low_u8(p2)); ++ vsum16_0 = vabal_high_u8(vsum16_0,p1,p2); ++ vsum16_1 = vabal_u8(vsum16_1,vget_low_u8(p1),vget_low_u8(p3)); ++ vsum16_1 = vabal_high_u8(vsum16_1,p1,p3); ++ vsum16_2 = vabal_u8(vsum16_2,vget_low_u8(p1),vget_low_u8(p4)); ++ vsum16_2 = vabal_high_u8(vsum16_2,p1,p4); ++ } ++ if (lx & 8) { ++ uint8x8_t p1 = *(uint8x8_t*)&pix1[x]; ++ uint8x8_t p2 = *(uint8x8_t*)&pix2[x]; ++ uint8x8_t p3 = *(uint8x8_t*)&pix3[x]; ++ uint8x8_t p4 = *(uint8x8_t*)&pix4[x]; ++ vsum16_0 = vabal_u8(vsum16_0,p1,p2); ++ vsum16_1 = vabal_u8(vsum16_1,p1,p3); ++ vsum16_2 = vabal_u8(vsum16_2,p1,p4); ++ x += 8; ++ } ++ if (lx & 4) { ++ uint32x2_t p1 = vdup_n_u32(0); ++ p1[0] = *(uint32_t*)&pix1[x]; ++ uint32x2_t p2 = vdup_n_u32(0); ++ p2[0] = *(uint32_t*)&pix2[x]; ++ uint32x2_t p3 = vdup_n_u32(0); ++ p3[0] = *(uint32_t*)&pix3[x]; ++ uint32x2_t p4 = vdup_n_u32(0); ++ p4[0] = *(uint32_t*)&pix4[x]; ++ vsum16_0 = vabal_u8(vsum16_0,p1,p2); ++ vsum16_1 = vabal_u8(vsum16_1,p1,p3); ++ vsum16_2 = vabal_u8(vsum16_2,p1,p4); ++ x += 4; ++ } ++ if (lx >= 4) { ++ res[0] += vaddvq_u16(vsum16_0); ++ res[1] += vaddvq_u16(vsum16_1); ++ res[2] += vaddvq_u16(vsum16_2); ++ } ++ ++#endif ++ if (lx & 3) for (; x < lx; x++) ++ { ++ res[0] += abs(pix1[x] - pix2[x]); ++ res[1] += abs(pix1[x] - pix3[x]); ++ res[2] += abs(pix1[x] - pix4[x]); ++ } ++ ++ pix1 += FENC_STRIDE; ++ pix2 += frefstride; ++ pix3 += frefstride; ++ pix4 += frefstride; ++ } ++} ++ ++template ++void sad_x4_neon(const pixel* pix1, const pixel* pix2, const pixel* pix3, const pixel* pix4, const pixel* pix5, intptr_t frefstride, int32_t* res) ++{ ++ res[0] = 0; ++ res[1] = 0; ++ res[2] = 0; ++ res[3] = 0; ++ for (int y = 0; y < ly; y++) ++ { ++ int x=0; ++ uint16x8_t vsum16_0 = vdupq_n_u16(0); ++ uint16x8_t vsum16_1 = vdupq_n_u16(0); ++ uint16x8_t vsum16_2 = vdupq_n_u16(0); ++ uint16x8_t vsum16_3 = vdupq_n_u16(0); ++#if HIGH_BIT_DEPTH ++ for (; (x + 8) <= lx; x+=8) { ++ uint16x8_t p1 = *(uint16x8_t*)&pix1[x]; ++ uint16x8_t p2 = *(uint16x8_t*)&pix2[x]; ++ uint16x8_t p3 = *(uint16x8_t*)&pix3[x]; ++ uint16x8_t p4 = *(uint16x8_t*)&pix4[x]; ++ uint16x8_t p5 = *(uint16x8_t*)&pix5[x]; ++ vsum16_0 = vabaq_s16(vsum16_0,p1,p2); ++ vsum16_1 = vabaq_s16(vsum16_1,p1,p3); ++ vsum16_2 = vabaq_s16(vsum16_2,p1,p4); ++ vsum16_3 = vabaq_s16(vsum16_3,p1,p5); ++ ++ } ++ if (lx & 4) { ++ uint16x4_t p1 = *(uint16x4_t*)&pix1[x]; ++ uint16x4_t p2 = *(uint16x4_t*)&pix2[x]; ++ uint16x4_t p3 = *(uint16x4_t*)&pix3[x]; ++ uint16x4_t p4 = *(uint16x4_t*)&pix4[x]; ++ uint16x4_t p5 = *(uint16x4_t*)&pix5[x]; ++ res[0] += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p2)); ++ res[1] += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p3)); ++ res[2] += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p4)); ++ res[3] += vaddlv_s16(vaba_s16(vdup_n_s16(0),p1,p5)); ++ x += 4; ++ } ++ if (lx >= 4) { ++ res[0] += vaddlvq_s16(vsum16_0); ++ res[1] += vaddlvq_s16(vsum16_1); ++ res[2] += vaddlvq_s16(vsum16_2); ++ res[3] += vaddlvq_s16(vsum16_3); ++ } ++ ++#else ++ ++ for (; (x + 16) <= lx; x+=16) { ++ uint8x16_t p1 = *(uint8x16_t*)&pix1[x]; ++ uint8x16_t p2 = *(uint8x16_t*)&pix2[x]; ++ uint8x16_t p3 = *(uint8x16_t*)&pix3[x]; ++ uint8x16_t p4 = *(uint8x16_t*)&pix4[x]; ++ uint8x16_t p5 = *(uint8x16_t*)&pix5[x]; ++ vsum16_0 = vabal_u8(vsum16_0,vget_low_u8(p1),vget_low_u8(p2)); ++ vsum16_0 = vabal_high_u8(vsum16_0,p1,p2); ++ vsum16_1 = vabal_u8(vsum16_1,vget_low_u8(p1),vget_low_u8(p3)); ++ vsum16_1 = vabal_high_u8(vsum16_1,p1,p3); ++ vsum16_2 = vabal_u8(vsum16_2,vget_low_u8(p1),vget_low_u8(p4)); ++ vsum16_2 = vabal_high_u8(vsum16_2,p1,p4); ++ vsum16_3 = vabal_u8(vsum16_3,vget_low_u8(p1),vget_low_u8(p5)); ++ vsum16_3 = vabal_high_u8(vsum16_3,p1,p5); ++ } ++ if (lx & 8) { ++ uint8x8_t p1 = *(uint8x8_t*)&pix1[x]; ++ uint8x8_t p2 = *(uint8x8_t*)&pix2[x]; ++ uint8x8_t p3 = *(uint8x8_t*)&pix3[x]; ++ uint8x8_t p4 = *(uint8x8_t*)&pix4[x]; ++ uint8x8_t p5 = *(uint8x8_t*)&pix5[x]; ++ vsum16_0 = vabal_u8(vsum16_0,p1,p2); ++ vsum16_1 = vabal_u8(vsum16_1,p1,p3); ++ vsum16_2 = vabal_u8(vsum16_2,p1,p4); ++ vsum16_3 = vabal_u8(vsum16_3,p1,p5); ++ x += 8; ++ } ++ if (lx & 4) { ++ uint32x2_t p1 = vdup_n_u32(0); ++ p1[0] = *(uint32_t*)&pix1[x]; ++ uint32x2_t p2 = vdup_n_u32(0); ++ p2[0] = *(uint32_t*)&pix2[x]; ++ uint32x2_t p3 = vdup_n_u32(0); ++ p3[0] = *(uint32_t*)&pix3[x]; ++ uint32x2_t p4 = vdup_n_u32(0); ++ p4[0] = *(uint32_t*)&pix4[x]; ++ uint32x2_t p5 = vdup_n_u32(0); ++ p5[0] = *(uint32_t*)&pix5[x]; ++ vsum16_0 = vabal_u8(vsum16_0,p1,p2); ++ vsum16_1 = vabal_u8(vsum16_1,p1,p3); ++ vsum16_2 = vabal_u8(vsum16_2,p1,p4); ++ vsum16_3 = vabal_u8(vsum16_3,p1,p5); ++ x += 4; ++ } ++ if (lx >= 4) { ++ res[0] += vaddvq_u16(vsum16_0); ++ res[1] += vaddvq_u16(vsum16_1); ++ res[2] += vaddvq_u16(vsum16_2); ++ res[3] += vaddvq_u16(vsum16_3); ++ } ++ ++#endif ++ if (lx & 3) for (; x < lx; x++) ++ { ++ res[0] += abs(pix1[x] - pix2[x]); ++ res[1] += abs(pix1[x] - pix3[x]); ++ res[2] += abs(pix1[x] - pix4[x]); ++ res[3] += abs(pix1[x] - pix5[x]); ++ } ++ ++ pix1 += FENC_STRIDE; ++ pix2 += frefstride; ++ pix3 += frefstride; ++ pix4 += frefstride; ++ pix5 += frefstride; ++ } ++} ++ ++ ++template ++sse_t sse_neon(const T1* pix1, intptr_t stride_pix1, const T2* pix2, intptr_t stride_pix2) ++{ ++ sse_t sum = 0; ++ ++ int32x4_t vsum1 = vdupq_n_s32(0); ++ int32x4_t vsum2 = vdupq_n_s32(0); ++ for (int y = 0; y < ly; y++) ++ { ++ int x = 0; ++ for (; (x+8) <= lx; x+=8) ++ { ++ int16x8_t tmp; ++ if (sizeof(T1) == 2 && sizeof(T2) == 2) { ++ tmp = vsubq_s16(*(int16x8_t *)&pix1[x],*(int16x8_t *)&pix2[x]); ++ } else if (sizeof(T1) == 1 && sizeof(T2) == 1){ ++ tmp = vsubl_u8(*(uint8x8_t *)&pix1[x],*(uint8x8_t *)&pix2[x]); ++ } ++ else { ++ X265_CHECK(false,"unsupported sse"); ++ } ++ vsum1 = vmlal_s16(vsum1,vget_low_s16(tmp),vget_low_s16(tmp)); ++ vsum2 = vmlal_high_s16(vsum2,tmp,tmp); ++ } ++ for (; x < lx; x++) ++ { ++ int tmp = pix1[x] - pix2[x]; ++ sum += (tmp * tmp); ++ } ++ ++ if (sizeof(T1) == 2 && sizeof(T2) == 2) ++ { ++ int32x4_t vsum = vaddq_u32(vsum1,vsum2);; ++ sum += vaddvq_u32(vsum); ++ vsum1 = vsum2 = vdupq_n_u16(0); ++ } ++ ++ pix1 += stride_pix1; ++ pix2 += stride_pix2; ++ } ++ int32x4_t vsum = vaddq_u32(vsum1,vsum2); ++ ++ return sum + vaddvq_u32(vsum); ++} ++ ++ ++template ++void blockcopy_ps_neon(int16_t* a, intptr_t stridea, const pixel* b, intptr_t strideb) ++{ ++ for (int y = 0; y < by; y++) ++ { ++ int x= 0; ++ for (; (x + 8) <= bx; x+=8) ++ { ++#if HIGH_BIT_DEPTH ++ *(int16x8_t *)&a[x] = *(int16x8_t *)&b[x]; ++#else ++ *(int16x8_t *)&a[x] = vmovl_u8(*(int8x8_t *)&b[x]); ++#endif ++ } ++ for (; x < bx; x++) { ++ a[x] = (int16_t)b[x]; ++ } ++ ++ a += stridea; ++ b += strideb; ++ } ++} ++ ++ ++template ++void blockcopy_pp_neon(pixel* a, intptr_t stridea, const pixel* b, intptr_t strideb) ++{ ++ for (int y = 0; y < by; y++) ++ { ++ int x = 0; ++#if HIGH_BIT_DEPTH ++ for (; (x + 8) <= bx; x+=8) ++ { ++ *(int16x8_t *)&a[x] = *(int16x8_t *)&b[x]; ++ } ++ if (bx & 4) ++ { ++ *(uint64_t *)&a[x] = *(uint64_t *)&b[x]; ++ x += 4; ++ } ++#else ++ for (; (x + 16) <= bx; x+=16) ++ { ++ *(uint8x16_t *)&a[x] = *(uint8x16_t *)&b[x]; ++ } ++ if (bx & 8) ++ { ++ *(uint8x8_t *)&a[x] = *(uint8x8_t *)&b[x]; ++ x += 8; ++ } ++ if (bx & 4) ++ { ++ *(uint32_t *)&a[x] = *(uint32_t *)&b[x]; ++ x += 4; ++ } ++#endif ++ for (; x < bx; x++) { ++ a[x] = b[x]; ++ } ++ ++ a += stridea; ++ b += strideb; ++ } ++} ++ ++ ++template ++void pixel_sub_ps_neon(int16_t* a, intptr_t dstride, const pixel* b0, const pixel* b1, intptr_t sstride0, intptr_t sstride1) ++{ ++ for (int y = 0; y < by; y++) ++ { ++ int x = 0; ++ for (; (x + 8) <= bx; x+=8) { ++#if HIGH_BIT_DEPTH ++ *(int16x8_t *)&a[x] = vsubq_s16(*(int16x8_t *)&b0[x], *(int16x8_t *)&b1[x]); ++#else ++ *(int16x8_t *)&a[x] = vsubl_u8(*(uint8x8_t *)&b0[x], *(uint8x8_t *)&b1[x]); ++#endif ++ } ++ for (; x < bx; x++) ++ a[x] = (int16_t)(b0[x] - b1[x]); ++ ++ b0 += sstride0; ++ b1 += sstride1; ++ a += dstride; ++ } ++} ++ ++template ++void pixel_add_ps_neon(pixel* a, intptr_t dstride, const pixel* b0, const int16_t* b1, intptr_t sstride0, intptr_t sstride1) ++{ ++ for (int y = 0; y < by; y++) ++ { ++ int x = 0; ++ for (; (x + 8) <= bx; x+=8) { ++ int16x8_t t; ++ int16x8_t b1e = *(int16x8_t *)&b1[x]; ++ int16x8_t b0e; ++#if HIGH_BIT_DEPTH ++ b0e = *(int16x8_t *)&b0[x]; ++ t = vaddq_s16(b0e,b1e); ++ t = vminq_s16(t,vdupq_n_s16((1 << X265_DEPTH) - 1)); ++ t = vmaxq_s16(t,vdupq_n_s16(0)); ++ *(int16x8_t *)&a[x] = t; ++#else ++ b0e = vmovl_u8(*(uint8x8_t *)&b0[x]); ++ t = vaddq_s16(b0e,b1e); ++ *(uint8x8_t *)&a[x] = vqmovun_s16(t); ++#endif ++ } ++ for (; x < bx; x++) ++ a[x] = (int16_t)x265_clip(b0[x] + b1[x]); ++ ++ b0 += sstride0; ++ b1 += sstride1; ++ a += dstride; ++ } ++} ++ ++template ++void addAvg_neon(const int16_t* src0, const int16_t* src1, pixel* dst, intptr_t src0Stride, intptr_t src1Stride, intptr_t dstStride) ++{ ++ ++ const int shiftNum = IF_INTERNAL_PREC + 1 - X265_DEPTH; ++ const int offset = (1 << (shiftNum - 1)) + 2 * IF_INTERNAL_OFFS; ++ ++ const int32x4_t addon = vdupq_n_s32(offset); ++ for (int y = 0; y < by; y++) ++ { ++ int x = 0; ++ ++ for (; (x + 8) <= bx; x += 8) ++ { ++ int16x8_t in0 = *(int16x8_t*)&src0[x]; ++ int16x8_t in1 = *(int16x8_t*)&src1[x]; ++ int32x4_t t1 = vaddl_s16(vget_low_s16(in0),vget_low_s16(in1)); ++ int32x4_t t2 = vaddl_high_s16(in0,in1); ++ t1 = vaddq_s32(t1,addon); ++ t2 = vaddq_s32(t2,addon); ++ t1 = vshrq_n_s32(t1,shiftNum); ++ t2 = vshrq_n_s32(t2,shiftNum); ++ int16x8_t t = vuzp1q_s16(t1,t2); ++#if HIGH_BIT_DEPTH ++ t = vminq_s16(t,vdupq_n_s16((1 << X265_DEPTH) - 1)); ++ t = vmaxq_s16(t,vdupq_n_s16(0)); ++ *(int16x8_t *)&dst[x] = t; ++#else ++ *(uint8x8_t *)&dst[x] = vqmovun_s16(t); ++#endif ++ } ++ for (; x < bx; x += 2) ++ { ++ dst[x + 0] = x265_clip((src0[x + 0] + src1[x + 0] + offset) >> shiftNum); ++ dst[x + 1] = x265_clip((src0[x + 1] + src1[x + 1] + offset) >> shiftNum); ++ } ++ ++ src0 += src0Stride; ++ src1 += src1Stride; ++ dst += dstStride; ++ } ++} ++ ++template ++void pixelavg_pp_neon(pixel* dst, intptr_t dstride, const pixel* src0, intptr_t sstride0, const pixel* src1, intptr_t sstride1, int) ++{ ++ for (int y = 0; y < ly; y++) ++ { ++ int x = 0; ++ for (; (x+8) <= lx; x+=8) { ++#if HIGH_BIT_DEPTH ++ int16x8_t in0 = *(int16x8_t *)&src0[x]; ++ int16x8_t in1 = *(int16x8_t *)&src1[x]; ++ int16x8_t t = vaddq_s16(in0,in1); ++ t = vaddq_s16(t,vdupq_n_s16(1)); ++ t = vshrq_n_s16(t,1); ++ *(int16x8_t *)&dst[x] = t; ++#else ++ int16x8_t in0 = vmovl_u8(*(uint8x8_t *)&src0[x]); ++ int16x8_t in1 = vmovl_u8(*(uint8x8_t *)&src1[x]); ++ int16x8_t t = vaddq_s16(in0,in1); ++ t = vaddq_s16(t,vdupq_n_s16(1)); ++ t = vshrq_n_s16(t,1); ++ *(uint8x8_t *)&dst[x] = vmovn_u16(t); ++#endif ++ } ++ for (; x < lx; x++) ++ dst[x] = (src0[x] + src1[x] + 1) >> 1; ++ ++ src0 += sstride0; ++ src1 += sstride1; ++ dst += dstride; ++ } ++} ++ ++ ++template ++void cpy1Dto2D_shl_neon(int16_t* dst, const int16_t* src, intptr_t dstStride, int shift) ++{ ++ X265_CHECK((((intptr_t)dst | (dstStride * sizeof(*dst))) & 15) == 0 || size == 4, "dst alignment error\n"); ++ X265_CHECK(((intptr_t)src & 15) == 0, "src alignment error\n"); ++ X265_CHECK(shift >= 0, "invalid shift\n"); ++ ++ for (int i = 0; i < size; i++) ++ { ++ int j = 0; ++ for (; (j+8) <= size; j+=8) ++ { ++ *(int16x8_t *)&dst[j] = vshlq_s16(*(int16x8_t*)&src[j],vdupq_n_s16(shift)); ++ } ++ for (; j < size; j++) ++ { ++ dst[j] = src[j] << shift; ++ } ++ src += size; ++ dst += dstStride; ++ } ++} ++ ++ ++template ++uint64_t pixel_var_neon(const uint8_t* pix, intptr_t i_stride) ++{ ++ uint32_t sum = 0, sqr = 0; ++ ++ int32x4_t vsqr = vdupq_n_s32(0); ++ for (int y = 0; y < size; y++) ++ { ++ int x = 0; ++ int16x8_t vsum = vdupq_n_s16(0); ++ for (; (x + 8) <= size; x+=8) ++ { ++ int16x8_t in; ++ in = vmovl_u8(*(uint8x8_t*)&pix[x]); ++ vsum = vaddq_u16(vsum,in); ++ vsqr = vmlal_s16(vsqr,vget_low_s16(in),vget_low_s16(in)); ++ vsqr = vmlal_high_s16(vsqr,in,in); ++ } ++ for (; x < size; x++) ++ { ++ sum += pix[x]; ++ sqr += pix[x] * pix[x]; ++ } ++ sum += vaddvq_s16(vsum); ++ ++ pix += i_stride; ++ } ++ sqr += vaddvq_u32(vsqr); ++ return sum + ((uint64_t)sqr << 32); ++} ++ ++template ++void getResidual_neon(const pixel* fenc, const pixel* pred, int16_t* residual, intptr_t stride) ++{ ++ for (int y = 0; y < blockSize; y++) ++ { ++ int x = 0; ++ for (; (x + 8) < blockSize; x+=8) { ++ int16x8_t vfenc,vpred; ++#if HIGH_BIT_DEPTH ++ vfenc = *(int16x8_t *)&fenc[x]; ++ vpred = *(int16x8_t *)&pred[x]; ++#else ++ vfenc = vmovl_u8(*(uint8x8_t *)&fenc[x]); ++ vpred = vmovl_u8(*(uint8x8_t *)&pred[x]); ++#endif ++ *(int16x8_t*)&residual[x] = vsubq_s16(vfenc,vpred); ++ } ++ for (; x < blockSize; x++) { ++ residual[x] = static_cast(fenc[x]) - static_cast(pred[x]); ++ } ++ fenc += stride; ++ residual += stride; ++ pred += stride; ++ } ++} ++ ++#if 1//!(HIGH_BIT_DEPTH) ++template ++int psyCost_pp_neon(const pixel* source, intptr_t sstride, const pixel* recon, intptr_t rstride) ++{ ++ static pixel zeroBuf[8] /* = { 0 } */; ++ ++ if (size) ++ { ++ int dim = 1 << (size + 2); ++ uint32_t totEnergy = 0; ++ for (int i = 0; i < dim; i += 8) ++ { ++ for (int j = 0; j < dim; j+= 8) ++ { ++ /* AC energy, measured by sa8d (AC + DC) minus SAD (DC) */ ++ int sourceEnergy = pixel_sa8d_8x8_neon(source + i * sstride + j, sstride, zeroBuf, 0) - ++ (sad_pp_neon<8, 8>(source + i * sstride + j, sstride, zeroBuf, 0) >> 2); ++ int reconEnergy = pixel_sa8d_8x8_neon(recon + i * rstride + j, rstride, zeroBuf, 0) - ++ (sad_pp_neon<8, 8>(recon + i * rstride + j, rstride, zeroBuf, 0) >> 2); ++ ++ totEnergy += abs(sourceEnergy - reconEnergy); ++ } ++ } ++ return totEnergy; ++ } ++ else ++ { ++ /* 4x4 is too small for sa8d */ ++ int sourceEnergy = pixel_satd_4x4_neon(source, sstride, zeroBuf, 0) - (sad_pp_neon<4, 4>(source, sstride, zeroBuf, 0) >> 2); ++ int reconEnergy = pixel_satd_4x4_neon(recon, rstride, zeroBuf, 0) - (sad_pp_neon<4, 4>(recon, rstride, zeroBuf, 0) >> 2); ++ return abs(sourceEnergy - reconEnergy); ++ } ++} ++ ++ ++template ++// Calculate sa8d in blocks of 8x8 ++int sa8d8(const pixel* pix1, intptr_t i_pix1, const pixel* pix2, intptr_t i_pix2) ++{ ++ int cost = 0; ++ ++ for (int y = 0; y < h; y += 8) ++ for (int x = 0; x < w; x += 8) ++ cost += pixel_sa8d_8x8_neon(pix1 + i_pix1 * y + x, i_pix1, pix2 + i_pix2 * y + x, i_pix2); ++ ++ return cost; ++} ++ ++template ++// Calculate sa8d in blocks of 16x16 ++int sa8d16(const pixel* pix1, intptr_t i_pix1, const pixel* pix2, intptr_t i_pix2) ++{ ++ int cost = 0; ++ ++ for (int y = 0; y < h; y += 16) ++ for (int x = 0; x < w; x += 16) ++ cost += pixel_sa8d_16x16_neon(pix1 + i_pix1 * y + x, i_pix1, pix2 + i_pix2 * y + x, i_pix2); ++ ++ return cost; ++} ++#endif ++ ++template ++void cpy2Dto1D_shl_neon(int16_t* dst, const int16_t* src, intptr_t srcStride, int shift) ++{ ++ X265_CHECK(((intptr_t)dst & 15) == 0, "dst alignment error\n"); ++ X265_CHECK((((intptr_t)src | (srcStride * sizeof(*src))) & 15) == 0 || size == 4, "src alignment error\n"); ++ X265_CHECK(shift >= 0, "invalid shift\n"); ++ ++ for (int i = 0; i < size; i++) ++ { ++ for (int j = 0; j < size; j++) ++ dst[j] = src[j] << shift; ++ ++ src += srcStride; ++ dst += size; ++ } ++} ++ ++ ++#if 1//!(HIGH_BIT_DEPTH) ++template ++// calculate satd in blocks of 4x4 ++int satd4(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2) ++{ ++ int satd = 0; ++ ++ for (int row = 0; row < h; row += 4) ++ for (int col = 0; col < w; col += 4) ++ satd += pixel_satd_4x4_neon(pix1 + row * stride_pix1 + col, stride_pix1, ++ pix2 + row * stride_pix2 + col, stride_pix2); ++ ++ return satd; ++} ++ ++template ++// calculate satd in blocks of 8x4 ++int satd8(const pixel* pix1, intptr_t stride_pix1, const pixel* pix2, intptr_t stride_pix2) ++{ ++ int satd = 0; ++ ++ if (((w | h) & 15) == 0) ++ { ++ for (int row = 0; row < h; row += 16) ++ for (int col = 0; col < w; col += 16) ++ satd += pixel_satd_16x16_neon(pix1 + row * stride_pix1 + col, stride_pix1, ++ pix2 + row * stride_pix2 + col, stride_pix2); ++ ++ } ++ else ++ if (((w | h) & 7) == 0) ++ { ++ for (int row = 0; row < h; row += 8) ++ for (int col = 0; col < w; col += 8) ++ satd += pixel_satd_8x8_neon(pix1 + row * stride_pix1 + col, stride_pix1, ++ pix2 + row * stride_pix2 + col, stride_pix2); ++ ++ } ++ else ++ { ++ for (int row = 0; row < h; row += 4) ++ for (int col = 0; col < w; col += 8) ++ satd += pixel_satd_8x4_neon(pix1 + row * stride_pix1 + col, stride_pix1, ++ pix2 + row * stride_pix2 + col, stride_pix2); ++ } ++ ++ return satd; ++} ++#endif ++ ++ ++template ++void transpose_neon(pixel* dst, const pixel* src, intptr_t stride) ++{ ++ for (int k = 0; k < blockSize; k++) ++ for (int l = 0; l < blockSize; l++) ++ dst[k * blockSize + l] = src[l * stride + k]; ++} ++ ++ ++template<> ++void transpose_neon<8>(pixel* dst, const pixel* src, intptr_t stride) ++{ ++ transpose8x8(dst,src,8,stride); ++} ++ ++template<> ++void transpose_neon<16>(pixel* dst, const pixel* src, intptr_t stride) ++{ ++ transpose16x16(dst,src,16,stride); ++} ++ ++template<> ++void transpose_neon<32>(pixel* dst, const pixel* src, intptr_t stride) ++{ ++ transpose32x32(dst,src,32,stride); ++} ++ ++ ++template<> ++void transpose_neon<64>(pixel* dst, const pixel* src, intptr_t stride) ++{ ++ transpose32x32(dst,src,64,stride); ++ transpose32x32(dst+32*64+32,src+32*stride+32,64,stride); ++ transpose32x32(dst+32*64,src+32,64,stride); ++ transpose32x32(dst+32,src+32*stride,64,stride); ++} ++ ++ ++template ++sse_t pixel_ssd_s_neon(const int16_t* a, intptr_t dstride) ++{ ++ sse_t sum = 0; ++ ++ ++ int32x4_t vsum = vdupq_n_s32(0); ++ ++ for (int y = 0; y < size; y++) ++ { ++ int x = 0; ++ ++ for (; (x + 8) <= size; x+=8) { ++ int16x8_t in = *(int16x8_t*)&a[x]; ++ vsum = vmlal_s16(vsum,vget_low_s16(in),vget_low_s16(in)); ++ vsum = vmlal_high_s16(vsum,(in),(in)); ++ } ++ for (; x < size; x++) { ++ sum += a[x] * a[x]; ++ } ++ ++ a += dstride; ++ } ++ return sum + vaddvq_s32(vsum); ++} ++ ++ ++}; ++ ++ ++ ++ ++namespace X265_NS { ++ ++ ++void setupPixelPrimitives_neon(EncoderPrimitives &p) ++{ ++ #define LUMA_PU(W, H) \ ++ p.pu[LUMA_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ p.pu[LUMA_ ## W ## x ## H].addAvg[NONALIGNED] = addAvg_neon; \ ++ p.pu[LUMA_ ## W ## x ## H].addAvg[ALIGNED] = addAvg_neon; \ ++ p.pu[LUMA_ ## W ## x ## H].sad = sad_pp_neon; \ ++ p.pu[LUMA_ ## W ## x ## H].sad_x3 = sad_x3_neon; \ ++ p.pu[LUMA_ ## W ## x ## H].sad_x4 = sad_x4_neon; \ ++ p.pu[LUMA_ ## W ## x ## H].pixelavg_pp[NONALIGNED] = pixelavg_pp_neon; \ ++ p.pu[LUMA_ ## W ## x ## H].pixelavg_pp[ALIGNED] = pixelavg_pp_neon; ++ ++#if !(HIGH_BIT_DEPTH) ++ ++#define LUMA_CU(W, H) \ ++ p.cu[BLOCK_ ## W ## x ## H].sub_ps = pixel_sub_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].add_ps[NONALIGNED] = pixel_add_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].add_ps[ALIGNED] = pixel_add_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].copy_ps = blockcopy_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].blockfill_s[NONALIGNED] = blockfill_s_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].blockfill_s[ALIGNED] = blockfill_s_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].cpy2Dto1D_shl = cpy2Dto1D_shl_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].cpy1Dto2D_shl[NONALIGNED] = cpy1Dto2D_shl_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].cpy1Dto2D_shl[ALIGNED] = cpy1Dto2D_shl_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].psy_cost_pp = psyCost_pp_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].transpose = transpose_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].var = pixel_var_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].calcresidual[NONALIGNED] = getResidual_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].calcresidual[ALIGNED] = getResidual_neon; \ ++ ++#else ++ ++ #define LUMA_CU(W, H) \ ++ p.cu[BLOCK_ ## W ## x ## H].sub_ps = pixel_sub_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].add_ps[NONALIGNED] = pixel_add_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].add_ps[ALIGNED] = pixel_add_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].copy_ps = blockcopy_ps_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].blockfill_s[NONALIGNED] = blockfill_s_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].blockfill_s[ALIGNED] = blockfill_s_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].cpy2Dto1D_shl = cpy2Dto1D_shl_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].cpy1Dto2D_shl[NONALIGNED] = cpy1Dto2D_shl_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].cpy1Dto2D_shl[ALIGNED] = cpy1Dto2D_shl_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].psy_cost_pp = psyCost_pp_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].transpose = transpose_neon; \ ++ /*p.cu[BLOCK_ ## W ## x ## H].var = pixel_var_neon;*/ \ ++ p.cu[BLOCK_ ## W ## x ## H].calcresidual[NONALIGNED] = getResidual_neon; \ ++ p.cu[BLOCK_ ## W ## x ## H].calcresidual[ALIGNED] = getResidual_neon; \ ++ ++ ++ ++#endif ++ ++ ++ LUMA_PU(4, 4); ++ LUMA_PU(8, 8); ++ LUMA_PU(16, 16); ++ LUMA_PU(32, 32); ++ LUMA_PU(64, 64); ++ LUMA_PU(4, 8); ++ LUMA_PU(8, 4); ++ LUMA_PU(16, 8); ++ LUMA_PU(8, 16); ++ LUMA_PU(16, 12); ++ LUMA_PU(12, 16); ++ LUMA_PU(16, 4); ++ LUMA_PU(4, 16); ++ LUMA_PU(32, 16); ++ LUMA_PU(16, 32); ++ LUMA_PU(32, 24); ++ LUMA_PU(24, 32); ++ LUMA_PU(32, 8); ++ LUMA_PU(8, 32); ++ LUMA_PU(64, 32); ++ LUMA_PU(32, 64); ++ LUMA_PU(64, 48); ++ LUMA_PU(48, 64); ++ LUMA_PU(64, 16); ++ LUMA_PU(16, 64); ++ ++ p.pu[LUMA_4x4].satd = pixel_satd_4x4_neon; ++ p.pu[LUMA_8x8].satd = satd8<8, 8>; ++ p.pu[LUMA_8x4].satd = pixel_satd_8x4_neon; ++ p.pu[LUMA_4x8].satd = satd4<4, 8>; ++ p.pu[LUMA_16x16].satd = satd8<16, 16>; ++ p.pu[LUMA_16x8].satd = satd8<16, 8>; ++ p.pu[LUMA_8x16].satd = satd8<8, 16>; ++ p.pu[LUMA_16x12].satd = satd8<16, 12>; ++ p.pu[LUMA_12x16].satd = satd4<12, 16>; ++ p.pu[LUMA_16x4].satd = satd8<16, 4>; ++ p.pu[LUMA_4x16].satd = satd4<4, 16>; ++ p.pu[LUMA_32x32].satd = satd8<32, 32>; ++ p.pu[LUMA_32x16].satd = satd8<32, 16>; ++ p.pu[LUMA_16x32].satd = satd8<16, 32>; ++ p.pu[LUMA_32x24].satd = satd8<32, 24>; ++ p.pu[LUMA_24x32].satd = satd8<24, 32>; ++ p.pu[LUMA_32x8].satd = satd8<32, 8>; ++ p.pu[LUMA_8x32].satd = satd8<8, 32>; ++ p.pu[LUMA_64x64].satd = satd8<64, 64>; ++ p.pu[LUMA_64x32].satd = satd8<64, 32>; ++ p.pu[LUMA_32x64].satd = satd8<32, 64>; ++ p.pu[LUMA_64x48].satd = satd8<64, 48>; ++ p.pu[LUMA_48x64].satd = satd8<48, 64>; ++ p.pu[LUMA_64x16].satd = satd8<64, 16>; ++ p.pu[LUMA_16x64].satd = satd8<16, 64>; ++ ++ ++ LUMA_CU(4, 4); ++ LUMA_CU(8, 8); ++ LUMA_CU(16, 16); ++ LUMA_CU(32, 32); ++ LUMA_CU(64, 64); ++ ++ ++ p.cu[BLOCK_4x4].sa8d = pixel_satd_4x4_neon; ++ p.cu[BLOCK_8x8].sa8d = pixel_sa8d_8x8_neon; ++ p.cu[BLOCK_16x16].sa8d = pixel_sa8d_16x16_neon; ++ p.cu[BLOCK_32x32].sa8d = sa8d16<32, 32>; ++ p.cu[BLOCK_64x64].sa8d = sa8d16<64, 64>; ++ ++ ++ #define CHROMA_PU_420(W, H) \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].addAvg[NONALIGNED] = addAvg_neon; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].addAvg[ALIGNED] = addAvg_neon; \ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ ++ ++ CHROMA_PU_420(4, 4); ++ CHROMA_PU_420(8, 8); ++ CHROMA_PU_420(16, 16); ++ CHROMA_PU_420(32, 32); ++ CHROMA_PU_420(4, 2); ++ CHROMA_PU_420(8, 4); ++ CHROMA_PU_420(4, 8); ++ CHROMA_PU_420(8, 6); ++ CHROMA_PU_420(6, 8); ++ CHROMA_PU_420(8, 2); ++ CHROMA_PU_420(2, 8); ++ CHROMA_PU_420(16, 8); ++ CHROMA_PU_420(8, 16); ++ CHROMA_PU_420(16, 12); ++ CHROMA_PU_420(12, 16); ++ CHROMA_PU_420(16, 4); ++ CHROMA_PU_420(4, 16); ++ CHROMA_PU_420(32, 16); ++ CHROMA_PU_420(16, 32); ++ CHROMA_PU_420(32, 24); ++ CHROMA_PU_420(24, 32); ++ CHROMA_PU_420(32, 8); ++ CHROMA_PU_420(8, 32); ++ ++ ++ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_2x2].satd = NULL; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_4x4].satd = pixel_satd_4x4_neon; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_8x8].satd = satd8<8, 8>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_16x16].satd = satd8<16, 16>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_32x32].satd = satd8<32, 32>; ++ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_4x2].satd = NULL; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_2x4].satd = NULL; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_8x4].satd = pixel_satd_8x4_neon; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_4x8].satd = satd4<4, 8>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_16x8].satd = satd8<16, 8>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_8x16].satd = satd8<8, 16>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_32x16].satd = satd8<32, 16>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_16x32].satd = satd8<16, 32>; ++ ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_8x6].satd = NULL; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_6x8].satd = NULL; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_8x2].satd = NULL; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_2x8].satd = NULL; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_16x12].satd = satd4<16, 12>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_12x16].satd = satd4<12, 16>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_16x4].satd = satd4<16, 4>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_4x16].satd = satd4<4, 16>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_32x24].satd = satd8<32, 24>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_24x32].satd = satd8<24, 32>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_32x8].satd = satd8<32, 8>; ++ p.chroma[X265_CSP_I420].pu[CHROMA_420_8x32].satd = satd8<8, 32>; ++ ++ ++ #define CHROMA_CU_420(W, H) \ ++ p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].sse_pp = sse_neon; \ ++ p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].copy_ps = blockcopy_ps_neon; \ ++ p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].sub_ps = pixel_sub_ps_neon; \ ++ p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].add_ps[NONALIGNED] = pixel_add_ps_neon; \ ++ p.chroma[X265_CSP_I420].cu[BLOCK_420_ ## W ## x ## H].add_ps[ALIGNED] = pixel_add_ps_neon; ++ ++ ++ CHROMA_CU_420(4, 4) ++ CHROMA_CU_420(8, 8) ++ CHROMA_CU_420(16, 16) ++ CHROMA_CU_420(32, 32) ++ ++ ++ p.chroma[X265_CSP_I420].cu[BLOCK_8x8].sa8d = p.chroma[X265_CSP_I420].pu[CHROMA_420_4x4].satd; ++ p.chroma[X265_CSP_I420].cu[BLOCK_16x16].sa8d = sa8d8<8, 8>; ++ p.chroma[X265_CSP_I420].cu[BLOCK_32x32].sa8d = sa8d16<16, 16>; ++ p.chroma[X265_CSP_I420].cu[BLOCK_64x64].sa8d = sa8d16<32, 32>; ++ ++ ++ #define CHROMA_PU_422(W, H) \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].addAvg[NONALIGNED] = addAvg_neon; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].addAvg[ALIGNED] = addAvg_neon; \ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ ++ ++ CHROMA_PU_422(4, 8); ++ CHROMA_PU_422(8, 16); ++ CHROMA_PU_422(16, 32); ++ CHROMA_PU_422(32, 64); ++ CHROMA_PU_422(4, 4); ++ CHROMA_PU_422(2, 8); ++ CHROMA_PU_422(8, 8); ++ CHROMA_PU_422(4, 16); ++ CHROMA_PU_422(8, 12); ++ CHROMA_PU_422(6, 16); ++ CHROMA_PU_422(8, 4); ++ CHROMA_PU_422(2, 16); ++ CHROMA_PU_422(16, 16); ++ CHROMA_PU_422(8, 32); ++ CHROMA_PU_422(16, 24); ++ CHROMA_PU_422(12, 32); ++ CHROMA_PU_422(16, 8); ++ CHROMA_PU_422(4, 32); ++ CHROMA_PU_422(32, 32); ++ CHROMA_PU_422(16, 64); ++ CHROMA_PU_422(32, 48); ++ CHROMA_PU_422(24, 64); ++ CHROMA_PU_422(32, 16); ++ CHROMA_PU_422(8, 64); ++ ++ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_2x4].satd = NULL; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_4x8].satd = satd4<4, 8>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_8x16].satd = satd8<8, 16>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_16x32].satd = satd8<16, 32>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_32x64].satd = satd8<32, 64>; ++ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_4x4].satd = pixel_satd_4x4_neon; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_2x8].satd = NULL; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_8x8].satd = satd8<8, 8>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_4x16].satd = satd4<4, 16>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_16x16].satd = satd8<16, 16>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_8x32].satd = satd8<8, 32>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_32x32].satd = satd8<32, 32>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_16x64].satd = satd8<16, 64>; ++ ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_8x12].satd = satd4<8, 12>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_6x16].satd = NULL; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_8x4].satd = satd4<8, 4>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_2x16].satd = NULL; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_16x24].satd = satd8<16, 24>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_12x32].satd = satd4<12, 32>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_16x8].satd = satd8<16, 8>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_4x32].satd = satd4<4, 32>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_32x48].satd = satd8<32, 48>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_24x64].satd = satd8<24, 64>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_32x16].satd = satd8<32, 16>; ++ p.chroma[X265_CSP_I422].pu[CHROMA_422_8x64].satd = satd8<8, 64>; ++ ++ ++ #define CHROMA_CU_422(W, H) \ ++ p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].sse_pp = sse_neon; \ ++ p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].copy_pp = blockcopy_pp_neon; \ ++ p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].copy_ps = blockcopy_ps_neon; \ ++ p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].sub_ps = pixel_sub_ps_neon; \ ++ p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].add_ps[NONALIGNED] = pixel_add_ps_neon; \ ++ p.chroma[X265_CSP_I422].cu[BLOCK_422_ ## W ## x ## H].add_ps[ALIGNED] = pixel_add_ps_neon; ++ ++ ++ CHROMA_CU_422(4, 8) ++ CHROMA_CU_422(8, 16) ++ CHROMA_CU_422(16, 32) ++ CHROMA_CU_422(32, 64) ++ ++ p.chroma[X265_CSP_I422].cu[BLOCK_8x8].sa8d = p.chroma[X265_CSP_I422].pu[CHROMA_422_4x8].satd; ++ p.chroma[X265_CSP_I422].cu[BLOCK_16x16].sa8d = sa8d8<8, 16>; ++ p.chroma[X265_CSP_I422].cu[BLOCK_32x32].sa8d = sa8d16<16, 32>; ++ p.chroma[X265_CSP_I422].cu[BLOCK_64x64].sa8d = sa8d16<32, 64>; ++ ++ ++} ++ ++ ++} ++ ++ ++#endif ++ +diff -Naur ./source/common/arm64/pixel-prim.h ../x265_apple_patch/source/common/arm64/pixel-prim.h +--- ./source/common/arm64/pixel-prim.h 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/pixel-prim.h 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,22 @@ ++#ifndef PIXEL_PRIM_NEON_H__ ++#define PIXEL_PRIM_NEON_H__ ++ ++#include "common.h" ++#include "slicetype.h" // LOWRES_COST_MASK ++#include "primitives.h" ++#include "x265.h" ++ ++ ++ ++namespace X265_NS { ++ ++ ++ ++void setupPixelPrimitives_neon(EncoderPrimitives &p); ++ ++ ++} ++ ++ ++#endif ++ +diff -Naur ./source/common/arm64/pixel.h ../x265_apple_patch/source/common/arm64/pixel.h +--- ./source/common/arm64/pixel.h 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/common/arm64/pixel.h 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,134 @@ ++/***************************************************************************** ++ * pixel.h: aarch64 pixel metrics ++ ***************************************************************************** ++ * Copyright (C) 2009-2019 x265 project ++ * ++ * Authors: David Conrad ++ * Janne Grunau ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. ++ * ++ * This program is also available under a commercial proprietary license. ++ * For more information, contact us at licensing@x265.com. ++ *****************************************************************************/ ++ ++#ifndef x265_AARCH64_PIXEL_H ++#define x265_AARCH64_PIXEL_H ++ ++#define x265_pixel_sad_16x16_neon x265_template(pixel_sad_16x16_neon) ++#define x265_pixel_sad_16x8_neon x265_template(pixel_sad_16x8_neon) ++#define x265_pixel_sad_4x16_neon x265_template(pixel_sad_4x16_neon) ++#define x265_pixel_sad_4x4_neon x265_template(pixel_sad_4x4_neon) ++#define x265_pixel_sad_4x8_neon x265_template(pixel_sad_4x8_neon) ++#define x265_pixel_sad_8x16_neon x265_template(pixel_sad_8x16_neon) ++#define x265_pixel_sad_8x4_neon x265_template(pixel_sad_8x4_neon) ++#define x265_pixel_sad_8x8_neon x265_template(pixel_sad_8x8_neon) ++#define x265_pixel_sad_x3_16x16_neon x265_template(pixel_sad_x3_16x16_neon) ++#define x265_pixel_sad_x3_16x8_neon x265_template(pixel_sad_x3_16x8_neon) ++#define x265_pixel_sad_x3_4x4_neon x265_template(pixel_sad_x3_4x4_neon) ++#define x265_pixel_sad_x3_4x8_neon x265_template(pixel_sad_x3_4x8_neon) ++#define x265_pixel_sad_x3_8x16_neon x265_template(pixel_sad_x3_8x16_neon) ++#define x265_pixel_sad_x3_8x4_neon x265_template(pixel_sad_x3_8x4_neon) ++#define x265_pixel_sad_x3_8x8_neon x265_template(pixel_sad_x3_8x8_neon) ++#define x265_pixel_sad_x4_16x16_neon x265_template(pixel_sad_x4_16x16_neon) ++#define x265_pixel_sad_x4_16x8_neon x265_template(pixel_sad_x4_16x8_neon) ++#define x265_pixel_sad_x4_4x4_neon x265_template(pixel_sad_x4_4x4_neon) ++#define x265_pixel_sad_x4_4x8_neon x265_template(pixel_sad_x4_4x8_neon) ++#define x265_pixel_sad_x4_8x16_neon x265_template(pixel_sad_x4_8x16_neon) ++#define x265_pixel_sad_x4_8x4_neon x265_template(pixel_sad_x4_8x4_neon) ++#define x265_pixel_sad_x4_8x8_neon x265_template(pixel_sad_x4_8x8_neon) ++#define x265_pixel_satd_16x16_neon x265_template(pixel_satd_16x16_neon) ++#define x265_pixel_satd_16x8_neon x265_template(pixel_satd_16x8_neon) ++#define x265_pixel_satd_4x16_neon x265_template(pixel_satd_4x16_neon) ++#define x265_pixel_satd_4x4_neon x265_template(pixel_satd_4x4_neon) ++#define x265_pixel_satd_4x8_neon x265_template(pixel_satd_4x8_neon) ++#define x265_pixel_satd_8x16_neon x265_template(pixel_satd_8x16_neon) ++#define x265_pixel_satd_8x4_neon x265_template(pixel_satd_8x4_neon) ++#define x265_pixel_satd_8x8_neon x265_template(pixel_satd_8x8_neon) ++#define x265_pixel_ssd_16x16_neon x265_template(pixel_ssd_16x16_neon) ++#define x265_pixel_ssd_16x8_neon x265_template(pixel_ssd_16x8_neon) ++#define x265_pixel_ssd_4x16_neon x265_template(pixel_ssd_4x16_neon) ++#define x265_pixel_ssd_4x4_neon x265_template(pixel_ssd_4x4_neon) ++#define x265_pixel_ssd_4x8_neon x265_template(pixel_ssd_4x8_neon) ++#define x265_pixel_ssd_8x16_neon x265_template(pixel_ssd_8x16_neon) ++#define x265_pixel_ssd_8x4_neon x265_template(pixel_ssd_8x4_neon) ++#define x265_pixel_ssd_8x8_neon x265_template(pixel_ssd_8x8_neon) ++#define DECL_PIXELS( ret, name, suffix, args ) \ ++ ret x265_pixel_##name##_16x16_##suffix args;\ ++ ret x265_pixel_##name##_16x8_##suffix args;\ ++ ret x265_pixel_##name##_8x16_##suffix args;\ ++ ret x265_pixel_##name##_8x8_##suffix args;\ ++ ret x265_pixel_##name##_8x4_##suffix args;\ ++ ret x265_pixel_##name##_4x16_##suffix args;\ ++ ret x265_pixel_##name##_4x8_##suffix args;\ ++ ret x265_pixel_##name##_4x4_##suffix args;\ ++ ++#define DECL_X1( name, suffix ) \ ++ DECL_PIXELS( int, name, suffix, ( uint8_t *, intptr_t, uint8_t *, intptr_t ) ) ++ ++#define DECL_X4( name, suffix ) \ ++ DECL_PIXELS( void, name##_x3, suffix, ( uint8_t *, uint8_t *, uint8_t *, uint8_t *, intptr_t, int * ) )\ ++ DECL_PIXELS( void, name##_x4, suffix, ( uint8_t *, uint8_t *, uint8_t *, uint8_t *, uint8_t *, intptr_t, int * ) ) ++ ++DECL_X1( sad, neon ) ++DECL_X4( sad, neon ) ++DECL_X1( satd, neon ) ++DECL_X1( ssd, neon ) ++ ++ ++#define x265_pixel_ssd_nv12_core_neon x265_template(pixel_ssd_nv12_core_neon) ++void x265_pixel_ssd_nv12_core_neon( uint8_t *, intptr_t, uint8_t *, intptr_t, int, int, uint64_t *, uint64_t * ); ++ ++#define x265_pixel_vsad_neon x265_template(pixel_vsad_neon) ++int x265_pixel_vsad_neon( uint8_t *, intptr_t, int ); ++ ++#define x265_pixel_sa8d_8x8_neon x265_template(pixel_sa8d_8x8_neon) ++int x265_pixel_sa8d_8x8_neon ( uint8_t *, intptr_t, uint8_t *, intptr_t ); ++#define x265_pixel_sa8d_16x16_neon x265_template(pixel_sa8d_16x16_neon) ++int x265_pixel_sa8d_16x16_neon( uint8_t *, intptr_t, uint8_t *, intptr_t ); ++#define x265_pixel_sa8d_satd_16x16_neon x265_template(pixel_sa8d_satd_16x16_neon) ++uint64_t x265_pixel_sa8d_satd_16x16_neon( uint8_t *, intptr_t, uint8_t *, intptr_t ); ++ ++#define x265_pixel_var_8x8_neon x265_template(pixel_var_8x8_neon) ++uint64_t x265_pixel_var_8x8_neon ( uint8_t *, intptr_t ); ++#define x265_pixel_var_8x16_neon x265_template(pixel_var_8x16_neon) ++uint64_t x265_pixel_var_8x16_neon ( uint8_t *, intptr_t ); ++#define x265_pixel_var_16x16_neon x265_template(pixel_var_16x16_neon) ++uint64_t x265_pixel_var_16x16_neon( uint8_t *, intptr_t ); ++#define x265_pixel_var2_8x8_neon x265_template(pixel_var2_8x8_neon) ++int x265_pixel_var2_8x8_neon ( uint8_t *, uint8_t *, int * ); ++#define x265_pixel_var2_8x16_neon x265_template(pixel_var2_8x16_neon) ++int x265_pixel_var2_8x16_neon( uint8_t *, uint8_t *, int * ); ++ ++#define x265_pixel_hadamard_ac_8x8_neon x265_template(pixel_hadamard_ac_8x8_neon) ++uint64_t x265_pixel_hadamard_ac_8x8_neon ( uint8_t *, intptr_t ); ++#define x265_pixel_hadamard_ac_8x16_neon x265_template(pixel_hadamard_ac_8x16_neon) ++uint64_t x265_pixel_hadamard_ac_8x16_neon ( uint8_t *, intptr_t ); ++#define x265_pixel_hadamard_ac_16x8_neon x265_template(pixel_hadamard_ac_16x8_neon) ++uint64_t x265_pixel_hadamard_ac_16x8_neon ( uint8_t *, intptr_t ); ++#define x265_pixel_hadamard_ac_16x16_neon x265_template(pixel_hadamard_ac_16x16_neon) ++uint64_t x265_pixel_hadamard_ac_16x16_neon( uint8_t *, intptr_t ); ++ ++#define x265_pixel_ssim_4x4x2_core_neon x265_template(pixel_ssim_4x4x2_core_neon) ++void x265_pixel_ssim_4x4x2_core_neon( const uint8_t *, intptr_t, ++ const uint8_t *, intptr_t, ++ int sums[2][4] ); ++#define x265_pixel_ssim_end4_neon x265_template(pixel_ssim_end4_neon) ++float x265_pixel_ssim_end4_neon( int sum0[5][4], int sum1[5][4], int width ); ++ ++#define x265_pixel_asd8_neon x265_template(pixel_asd8_neon) ++int x265_pixel_asd8_neon( uint8_t *, intptr_t, uint8_t *, intptr_t, int ); ++ ++#endif +diff -Naur ./source/common/cpu.cpp ../x265_apple_patch/source/common/cpu.cpp +--- ./source/common/cpu.cpp 2021-05-08 13:06:22.000000000 +0100 ++++ ../x265_apple_patch/source/common/cpu.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -104,7 +104,8 @@ + { "ARMv6", X265_CPU_ARMV6 }, + { "NEON", X265_CPU_NEON }, + { "FastNeonMRC", X265_CPU_FAST_NEON_MRC }, +- ++#elif X265_ARCH_ARM64 ++ { "NEON", X265_CPU_NEON }, + #elif X265_ARCH_POWER8 + { "Altivec", X265_CPU_ALTIVEC }, + +@@ -374,6 +375,18 @@ + #endif // if HAVE_ARMV6 + return flags; + } ++#elif X265_ARCH_ARM64 ++ ++uint32_t cpu_detect(bool benableavx512) ++{ ++ int flags = 0; ++ ++#if HAVE_NEON ++ flags |= X265_CPU_NEON; ++#endif ++ ++ return flags; ++} + + #elif X265_ARCH_POWER8 + +diff -Naur ./source/common/pixel.cpp ../x265_apple_patch/source/common/pixel.cpp +--- ./source/common/pixel.cpp 2021-05-08 13:06:22.000000000 +0100 ++++ ../x265_apple_patch/source/common/pixel.cpp 2021-05-08 13:08:01.000000000 +0100 +@@ -266,7 +266,7 @@ + { + int satd = 0; + +-#if ENABLE_ASSEMBLY && X265_ARCH_ARM64 ++#if ENABLE_ASSEMBLY && X265_ARCH_ARM64 && 0 + pixelcmp_t satd_4x4 = x265_pixel_satd_4x4_neon; + #endif + +@@ -284,7 +284,7 @@ + { + int satd = 0; + +-#if ENABLE_ASSEMBLY && X265_ARCH_ARM64 ++#if ENABLE_ASSEMBLY && X265_ARCH_ARM64 && 0 + pixelcmp_t satd_8x4 = x265_pixel_satd_8x4_neon; + #endif + +diff -Naur ./source/common/version.cpp ../x265_apple_patch/source/common/version.cpp +--- ./source/common/version.cpp 2021-05-08 13:06:22.000000000 +0100 ++++ ../x265_apple_patch/source/common/version.cpp 2021-05-08 13:47:38.000000000 +0100 +@@ -31,7 +31,7 @@ + + #if defined(__clang__) + #define COMPILEDBY "[clang " XSTR(__clang_major__) "." XSTR(__clang_minor__) "." XSTR(__clang_patchlevel__) "]" +-#ifdef __IA64__ ++#ifdef __IA64__ || __arm64__ || __aarch64__ + #define ONARCH "[on 64-bit] " + #else + #define ONARCH "[on 32-bit] " +@@ -71,7 +71,7 @@ + #define ONOS "[Unk-OS]" + #endif + +-#if X86_64 ++#if X86_64 || __arm64__ || __aarch64__ + #define BITS "[64 bit]" + #else + #define BITS "[32 bit]" +diff -Naur ./source/test/testharness.h ../x265_apple_patch/source/test/testharness.h +--- ./source/test/testharness.h 2021-05-08 13:06:22.000000000 +0100 ++++ ../x265_apple_patch/source/test/testharness.h 2021-05-08 13:08:01.000000000 +0100 +@@ -64,7 +64,6 @@ + + uint64_t m_rand; + }; +- + #ifdef _MSC_VER + #include + #elif HAVE_RDTSC +@@ -73,7 +72,7 @@ + #include + #elif ( !defined(__APPLE__) && defined (__GNUC__) && defined(__ARM_NEON__)) + #include +-#elif defined(__GNUC__) && (!defined(__clang__) || __clang_major__ < 4) ++#else + /* fallback for older GCC/MinGW */ + static inline uint32_t __rdtsc(void) + { +@@ -90,6 +89,12 @@ + + // TO-DO: replace clock() function with appropriate ARM cpu instructions + a = clock(); ++#elif X265_ARCH_ARM64 ++ // TOD-DO: verify following inline asm to get cpu Timestamp Counter for ARM arch ++ // asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(a)); ++ ++ // TO-DO: replace clock() function with appropriate ARM cpu instructions ++ a = clock(); + #endif + #endif + return a; +@@ -140,7 +145,7 @@ + * needs an explicit asm check because it only sometimes crashes in normal use. */ + intptr_t PFX(checkasm_call)(intptr_t (*func)(), int *ok, ...); + float PFX(checkasm_call_float)(float (*func)(), int *ok, ...); +-#elif X265_ARCH_ARM == 0 ++#elif (X265_ARCH_ARM == 0 && X265_ARCH_ARM64 == 0) + #define PFX(stack_pagealign)(func, align) func() + #endif + +diff -Naur ./source/test/testharness.h.orig ../x265_apple_patch/source/test/testharness.h.orig +--- ./source/test/testharness.h.orig 1970-01-01 01:00:00.000000000 +0100 ++++ ../x265_apple_patch/source/test/testharness.h.orig 2021-05-08 13:08:01.000000000 +0100 +@@ -0,0 +1,184 @@ ++/***************************************************************************** ++ * Copyright (C) 2013-2020 MulticoreWare, Inc ++ * ++ * Authors: Steve Borho ++ * Min Chen ++ * Yimeng Su ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. ++ * ++ * This program is also available under a commercial proprietary license. ++ * For more information, contact us at license @ x265.com. ++ *****************************************************************************/ ++ ++#ifndef _TESTHARNESS_H_ ++#define _TESTHARNESS_H_ 1 ++ ++#include "common.h" ++#include "primitives.h" ++ ++#if _MSC_VER ++#pragma warning(disable: 4324) // structure was padded due to __declspec(align()) ++#endif ++ ++#define PIXEL_MIN 0 ++#define SHORT_MAX 32767 ++#define SHORT_MIN -32767 ++#define UNSIGNED_SHORT_MAX 65535 ++ ++using namespace X265_NS; ++ ++extern const char* lumaPartStr[NUM_PU_SIZES]; ++extern const char* const* chromaPartStr[X265_CSP_COUNT]; ++ ++class TestHarness ++{ ++public: ++ ++ TestHarness() {} ++ ++ virtual ~TestHarness() {} ++ ++ virtual bool testCorrectness(const EncoderPrimitives& ref, const EncoderPrimitives& opt) = 0; ++ ++ virtual void measureSpeed(const EncoderPrimitives& ref, const EncoderPrimitives& opt) = 0; ++ ++ virtual const char *getName() const = 0; ++ ++protected: ++ ++ /* Temporary variables for stack checks */ ++ int m_ok; ++ ++ uint64_t m_rand; ++}; ++ ++#ifdef _MSC_VER ++#include ++#elif HAVE_RDTSC ++#include ++#elif (!defined(__APPLE__) && (defined (__GNUC__) && (defined(__x86_64__) || defined(__i386__)))) ++#include ++#elif ( !defined(__APPLE__) && defined (__GNUC__) && defined(__ARM_NEON__)) ++#include ++#elif defined(__GNUC__) && (!defined(__clang__) || __clang_major__ < 4) ++/* fallback for older GCC/MinGW */ ++static inline uint32_t __rdtsc(void) ++{ ++ uint32_t a = 0; ++ ++#if X265_ARCH_X86 ++ asm volatile("rdtsc" : "=a" (a) ::"edx"); ++#elif X265_ARCH_ARM ++#if X265_ARCH_ARM64 ++ asm volatile("mrs %0, cntvct_el0" : "=r"(a)); ++#else ++ // TOD-DO: verify following inline asm to get cpu Timestamp Counter for ARM arch ++ // asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(a)); ++ ++ // TO-DO: replace clock() function with appropriate ARM cpu instructions ++ a = clock(); ++#endif ++#endif ++ return a; ++} ++#endif // ifdef _MSC_VER ++ ++#define BENCH_RUNS 2000 ++ ++/* Adapted from checkasm.c, runs each optimized primitive four times, measures rdtsc ++ * and discards invalid times. Repeats BENCH_RUNS times to get a good average. ++ * Then measures the C reference with BENCH_RUNS / 4 runs and reports X factor and average cycles.*/ ++#define REPORT_SPEEDUP(RUNOPT, RUNREF, ...) \ ++ { \ ++ uint32_t cycles = 0; int runs = 0; \ ++ RUNOPT(__VA_ARGS__); \ ++ for (int ti = 0; ti < BENCH_RUNS; ti++) { \ ++ uint32_t t0 = (uint32_t)__rdtsc(); \ ++ RUNOPT(__VA_ARGS__); \ ++ RUNOPT(__VA_ARGS__); \ ++ RUNOPT(__VA_ARGS__); \ ++ RUNOPT(__VA_ARGS__); \ ++ uint32_t t1 = (uint32_t)__rdtsc() - t0; \ ++ if (t1 * runs <= cycles * 4 && ti > 0) { cycles += t1; runs++; } \ ++ } \ ++ uint32_t refcycles = 0; int refruns = 0; \ ++ RUNREF(__VA_ARGS__); \ ++ for (int ti = 0; ti < BENCH_RUNS / 4; ti++) { \ ++ uint32_t t0 = (uint32_t)__rdtsc(); \ ++ RUNREF(__VA_ARGS__); \ ++ RUNREF(__VA_ARGS__); \ ++ RUNREF(__VA_ARGS__); \ ++ RUNREF(__VA_ARGS__); \ ++ uint32_t t1 = (uint32_t)__rdtsc() - t0; \ ++ if (t1 * refruns <= refcycles * 4 && ti > 0) { refcycles += t1; refruns++; } \ ++ } \ ++ x265_emms(); \ ++ float optperf = (10.0f * cycles / runs) / 4; \ ++ float refperf = (10.0f * refcycles / refruns) / 4; \ ++ printf("\t%3.2fx ", refperf / optperf); \ ++ printf("\t %-8.2lf \t %-8.2lf\n", optperf, refperf); \ ++ } ++ ++extern "C" { ++#if X265_ARCH_X86 ++int PFX(stack_pagealign)(int (*func)(), int align); ++ ++/* detect when callee-saved regs aren't saved ++ * needs an explicit asm check because it only sometimes crashes in normal use. */ ++intptr_t PFX(checkasm_call)(intptr_t (*func)(), int *ok, ...); ++float PFX(checkasm_call_float)(float (*func)(), int *ok, ...); ++#elif X265_ARCH_ARM == 0 ++#define PFX(stack_pagealign)(func, align) func() ++#endif ++ ++#if X86_64 ++ ++/* Evil hack: detect incorrect assumptions that 32-bit ints are zero-extended to 64-bit. ++ * This is done by clobbering the stack with junk around the stack pointer and calling the ++ * assembly function through x265_checkasm_call with added dummy arguments which forces all ++ * real arguments to be passed on the stack and not in registers. For 32-bit argument the ++ * upper half of the 64-bit register location on the stack will now contain junk. Note that ++ * this is dependent on compiler behavior and that interrupts etc. at the wrong time may ++ * overwrite the junk written to the stack so there's no guarantee that it will always ++ * detect all functions that assumes zero-extension. ++ */ ++void PFX(checkasm_stack_clobber)(uint64_t clobber, ...); ++#define checked(func, ...) ( \ ++ m_ok = 1, m_rand = (rand() & 0xffff) * 0x0001000100010001ULL, \ ++ PFX(checkasm_stack_clobber)(m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, \ ++ m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, \ ++ m_rand, m_rand, m_rand, m_rand, m_rand), /* max_args+6 */ \ ++ PFX(checkasm_call)((intptr_t(*)())func, &m_ok, 0, 0, 0, 0, __VA_ARGS__)) ++ ++#define checked_float(func, ...) ( \ ++ m_ok = 1, m_rand = (rand() & 0xffff) * 0x0001000100010001ULL, \ ++ PFX(checkasm_stack_clobber)(m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, \ ++ m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, m_rand, \ ++ m_rand, m_rand, m_rand, m_rand, m_rand), /* max_args+6 */ \ ++ PFX(checkasm_call_float)((float(*)())func, &m_ok, 0, 0, 0, 0, __VA_ARGS__)) ++#define reportfail() if (!m_ok) { fflush(stdout); fprintf(stderr, "stack clobber check failed at %s:%d", __FILE__, __LINE__); abort(); } ++#elif ARCH_X86 ++#define checked(func, ...) PFX(checkasm_call)((intptr_t(*)())func, &m_ok, __VA_ARGS__); ++#define checked_float(func, ...) PFX(checkasm_call_float)((float(*)())func, &m_ok, __VA_ARGS__); ++ ++#else // if X86_64 ++#define checked(func, ...) func(__VA_ARGS__) ++#define checked_float(func, ...) func(__VA_ARGS__) ++#define reportfail() ++#endif // if X86_64 ++} ++ ++#endif // ifndef _TESTHARNESS_H_